
Innovations Syst Softw Eng (2007) 3:193–202
DOI 10.1007/s11334-007-0024-1

ORIGINAL PAPER

REquirements TRacing On target (RETRO): improving software
maintenance through traceability recovery

Jane Huffman Hayes · Alex Dekhtyar ·
Senthil Karthikeyan Sundaram · E. Ashlee Holbrook ·
Sravanthi Vadlamudi · Alain April

Received: 12 November 2006 / Accepted: 1 May 2007 / Published online: 24 July 2007
© Springer-Verlag London Limited 2007

Abstract A number of important tasks in software main-
tenance require an up-to-date requirements traceability
matrix (RTM): change impact analysis, determination of test
cases to execute for regression testing, etc. The generation
and maintenance of RTMs are tedious and error-prone, and
they are hence often not done. In this paper, we present
REquirements TRacing On-target (RETRO), a special-
purpose requirements tracing tool. We discuss how RETRO
automates the generation of RTMs and present the results of
a study comparing manual RTM generation to RTM gener-
ation using RETRO. The study showed that RETRO found
significantly more correct links than manual tracing and took
only one third of the time to do so.

Work performed while A. Dekhtyar was on the faculty at the
University of Kentucky.

J. Huffman Hayes (B) · S. Sundaram · A. Holbrook · S. Vadlamudi
Computer Science Department, University of Kentucky,
Lexington, USA
e-mail: hayes@cs.uky.edu

S. K. Sundaram
e-mail: skart2@uky.edu

E. A. Holbrook
e-mail: ashlee@uky.edu

S. Vadlamudi
e-mail: Sravanthi.Vadlamudi@uky.edu

A. Dekhtyar
Center of Excellence in Traceability, Lexington, USA
e-mail: dekhtyar@traceabilitycenter.org

A. April
Department of Software Engineering Université du Québec,
École de Technologie Supérieure, Montreal, Canada
e-mail: alain.april@etsmtl.ca

1 Introduction

Software maintenance is central to the mission of many orga-
nizations. It consumes a large part of the software lifecycle
costs and there are billions of lines of code under maintenance
in the world [23]. One of the hardest problems in software
maintenance is to understand the program and to localize
the program parts that should be modified to complete the
maintenance task at hand. The problem can be serious when
maintaining systems that have been evolved by many dif-
ferent individuals using agile methodologies that yield little
documentation.

Software traceability is becoming recognized as a signif-
icant contributor to efficient software and system quality.
However, as empirical studies and quality audits of indus-
trial organizations have indicated, its practice and instru-
mentation is not always satisfactory. An explanation often
stated to justify non-conformance of keeping the traceability
links consistent is the process itself which is time consuming,
error-prone, and labor-intensive.

In many industries, the software maintenance methodol-
ogy requirements state that documented bi-directional
traceability needs to be maintained over the entire life of
the system. This facilitates software change impact analy-
sis, reuse analysis, program comprehension, regression test-
ing, etc. The main issue is that software maintainers find the
update of the system documentation to be tedious, and hence
it is often neglected. To verify the accuracy of, or to recre-
ate, a traceability matrix that is not well-maintained makes
it necessary to create traceability links and matrices “after-
the-fact.” This activity is called traceability recovery.

In addition, the process of creating and maintaining a
requirements tracing matrix (RTM) is time consuming and
error-prone. The tools that are available to assist with trac-
ing are aimed at developers who are creating the trace as they

123

194 J. Huffman Hayes et al.

develop the system the first time. They do not readily support
the maintenance of an RTM or after the fact generation of an
RTM. Clearly there is a need for automation.

In this paper, we present RETRO, a tool that we have built
to address the recovery of traceability for artifacts contain-
ing unstructured textual narrative. RETRO uses information
retrieval (IR) and text mining methods to construct candi-
date traces. To date, it has been used to trace requirements
and design documents [2,3] and collections of bug reports
[4]. The tool has evolved from a research only tool-kit into
a more industrial tool directed at verification and validation
(V&V) analysts as well as maintainers in several countries.
The tool consists of a set of IR and text mining methods as
well as a front-end that provides functionality for the analyst
to use during the tracing process. Our work to date has largely
focused on the quality of generated traces as a function of
the IR methods used [1–3].

We have begun to venture into an examination of how the
analyst interacts with such a tool, how usable the tool is, and
how this impacts the quality of the final traceability matrix.
A preliminary result showed that the analysts were satisfied
with the back-end, but wanted a better front-end [5,6]. We
set about to address these concerns, and the latest version of
RETRO was developed after a year-long effort of re-design
and improvement to the front-end capabilities of RETRO. In
this paper, we report on the study we undertook to evaluate
the usability of the resulting front-end.

The paper is organized into six sections. IR for tracing is
presented in Sect. 2. The tracing tool, RETRO, is presented
in Sect. 3. The empirical study undertaken to assess RETRO
is discussed in Sect. 4. Related work is presented in Sect. 5.
Finally, conclusions and future work are presented in Sect. 6.

2 IR for tracing

Since [1], we have observed that IR methods can be adopted
and, if necessary, adapted for use in tracing textual artifacts.
Indeed, a typical IR problem involves a document collection
and a user information need (expressed in the form of a text
query). The task is to find documents in the collection that are
deemed relevant to the query. When two artifacts are traced
to each other, elements of one of the artifacts serve as “doc-
uments” in the “document collection,” while the elements of
the other serve as queries. In particular, when forward trac-
ing (from a parent artifact to a child artifact) is considered,
low-level elements form the “collection” while high-level
elements become the queries.

We have incorporated a number of different IR methods in
RETRO. Our prior work [5,6] suggests that analyst satisfac-
tion with the tool depends mostly on the features/functionality
available through the GUI rather than on the IR methods
used. This paper concentrates on the front-end functionality

of RETRO, but for illustrative purposes we describe one of
the methods, vector space retrieval with tf-idf term weight-
ing and with standard Rochio feedback processing [7]. This
method is the default tracing technique in RETRO.

Vector space retrieval methods are the bread-and-butter
of IR. These methods represent each document in the doc-
ument collection and each query as a vector of keyword
weights, where keywords (or terms) are the words found
in the documents. In particular, each document and query
are passed through a stop word removal procedure, remov-
ing words with no significant importance, such as “a,” “and,”
“to,” and “shall.” After that, the remaining text is stemmed
to ensure that words such as “information,” “informational,”
and “informative” are treated as the same term [7]. The
vocabulary of the document collection, D = {k1, . . . , kN },
is formed as the union of all terms found in all documents.
Each document, di , is then represented as a vector, di =
(wi1, . . . , wi K) of term/keyword weights. Different term
weighting schemes can be used to construct these vectors.
The most popular scheme, tf-idf, uses the formula wi j =
t fi j ·log

(
n

d f j

)
, where t fi j , called term frequency of keyword

k j in document di , is the normalized frequency of occurrence

of k j in di , while log
(

n
d f j

)
, is called the inverse document

frequency of term k j . That is, term weight is proportional to
how often the term is found in the document and inversely
proportional to (the logarithm of) how often it is found in
the entire collection. Given a document vector d and a simi-
larly computed query vector q, the similarity between them is
computed as the cosine of the angle between the two vectors:

sim(d, q) = cos(d, q) =
∑N

j=1 d j · q j∑N
j=1 d2

j
·∑N

j=1 q2
j

It is well-known in IR that the quality of retrieval can be
improved by using user relevance feedback, i.e., the informa-
tion about relevance or irrelevance of specific retrieved doc-
uments provided by humans back to an IR system. RETRO
includes support for relevance feedback. Relevance feedback
techniques for vector-space methods work by adjusting the
keyword weights of query vectors according to the feedback.
Feedback consists of “relevant” and “irrelevant” qualifica-
tions for some of the documents retrieved in the previous
step. More formally, for a query q, let Dq be a list of doc-
ument vectors retrieved. The user feedback identifies two
subsets in Dq : Dr of size R of documents relevant to q and
Dirr of size S of irrelevant documents. Dr and Dirr are dis-
joint, but do not necessarily cover the entire set Dq . We use
the standard Rochio [7] feedback processing method:

qnew = αq +
⎛
⎝β

r

∑
d j ∈Dr

d j

⎞
⎠ −

⎛
⎝γ

s

∑
dk∈Dirr

dk

⎞
⎠.

123

REquirements TRacing On target (RETRO) 195

Here, query q is adjusted by adding to its vector a vector
consisting of the document vectors identified as relevant, and
subtracting from it the sum of all document vectors identi-
fied as not relevant. The first adjustment is designed to poten-
tially increase recall (defined below). The second adjustment
can potentially increase precision (defined below). The con-
stants α, β, γ in the formulas above can be adjusted in order
to emphasize positive or negative feedback as well as the
importance of the original query vector (in this paper, all val-
ues were set to 1). Once the query vectors have been recom-
puted, the selected IR algorithm is re-run with the modified
query vectors. This cycle can be repeated until the user is
satisfied with the results.

Measuring the accuracy of IR methods. Recall and pre-
cision are two measures traditionally used to evaluate the
accuracy of the results returned by IR methods. Informally,
precision measures the percentage of retrieved documents
that are relevant, while recall measures the percentage of
relevant documents that were retrieved. More formally, if a
document collection has N documents, R of which are rel-
evant to query q, and an IR method retrieves n documents,
r of which are relevant to q, then the precision and recall of
the method on query q are defined as follows:

precision = r

n
; recall = r

R
.

High recall of candidate link lists generated by IR meth-
ods used for traceability analysis means that the methods
successfully discovered most of the links from the RTM, i.e.,
few errors of omission were committed. High precision of
candidate link lists means that most of the links retrieved by
the method were from the RTM, i.e., few errors of commis-
sion were committed. In our prior work [2,3,8], we argue that
it is easier for an analyst to discover an error of commission,
i.e., recognize that a retrieved candidate link is incorrect, than
to recognize an error of omission, i.e., recognize that a valid
link has not been reported.

3 RETRO

Originally, RETRO was designed as a nameless research
toolbox of IR methods adopted and adapted, where needed,
for requirements tracing. The name RETRO and the first
front-end appeared only about one year after the original
development. The purpose of the first front-end was simply
to allow researchers to browse the results of tracing methods.

Over time, our view of RETRO has evolved. The concept
of a special-purpose requirements tracing tool caught the eye
of NASA and analysts working on NASA independent ver-
ification and validation (IV&V) projects. Our first attempts
to use RETRO in such contexts, as well as our work on new
tracing methods [5,6,9], led us to the observation that IV&V

analysts were content with the RETRO back-end, but would
like to see the front-end of RETRO implement a wider range
of facilities for tracing. Our most recent effort has led to the
complete redevelopment of the RETRO front end and devel-
opment of additional functionality.

3.1 Evolution of RETRO

The first version of the current RETRO GUI (RETRO 2.0)
was developed with basic functionalities that allowed an ana-
lyst to work with the IR methods, to view the results, and
then to provide some feedback. The version did not provide
support for viewing the final trace or for searching for any
links that may have been omitted by the IR methods. Also,
the basic functionalities provided were not easy to use. As
this version was developed with minimal options, it posed
problems for users such as lack of functionality and lack of
usability.

The next version of RETRO, 2.3, added the functionality
required for tracing a project and also fixed problems from
the first version. This version allowed users to reject links
that were not correct (errors of commission, i.e, errors made
by the IR methods in retrieving the candidate link lists),
but did not allow the user to report errors of omission (links
missed by the IR methods).

RETRO, 2.5, had additional support for reporting errors
of omission using a separate tab called ‘Browse’, which also
provided support for manual tracing. This version also pro-
vided filtering functionality to allow the user to control the
display of candidate links.

The next version of RETRO, 2.7, was developed to include
functionality for the analyst to control the display of the
requirements and to allow the analyst to view the completed
projects in an easy to understand way. This version also added
support for searching for keywords in the browse tab. This
version had some scalability issues and failed to work when
large projects were loaded. In addition to addressing these
issues, the final beta version of RETRO (2.N.N) added the
ability to assess an existing RTM and also added enhanced
functionality for filtering the display of candidate links.

3.2 Architecture of RETRO

Figure 1 shows the architecture of RETRO. The core part of
RETRO consists of the IR toolbox, the feedback process-
ing methods, and the GUI front end. In addition to this,
methods for building representations of traced documents
are included. At the present time, all components except for
the GUI are written in C++, while the front end of RETRO
was developed in Java using Eclipse’s SWT GUI library.
The components communicate with each other in one of two
ways: (i) by changing the representation of the documents
stored on disk, or (ii) by using XML files encoding candidate

123

196 J. Huffman Hayes et al.

Fig. 1 Architecture of RETRO

link lists and user feedback information. In particular, build
methods and the feedback processor change the representa-
tion of the documents on disk, while the toolbox methods
encode their results in an XML file read by the GUI. The
GUI solicits user feedback, and based on it, modifies the
XML file, which it then passes to the feedback processor for
a new round of tracing.

3.3 Functionality of RETRO

The version of RETRO described here, RETRO 2.5, has been
developed with a single major use case in mind. This use case
involves an IV&V analyst tasked to trace a pair of documents
from scratch. One of the current development branches of
RETRO deals with additional use cases involving assessment
of existing RTMs.

RETRO allows analysts to work on tracing projects. The
work with RETRO must start with an analyst either creating
a new project or loading an existing project. To specify a
project, the analyst must indicate to RETRO the location
of the documents that need to be traced (our GUI shows
them as high- and low-level, but any textual artifact may be
traced to any other textual artifact). Optionally, the analyst
may choose the IR method that RETRO is to use for tracing
(the default is vector space retrieval with tf-idf term weighting
[7]) and select the feedback processing method (the default is
standard Rochio [7]). RETRO invokes the build component
to construct the representations of the high- and low-level
elements for the selected IR method, after which it displays
the main GUI and lets the analyst conduct the tracing. Figs. 2
and 3 depict the GUI for the two tracing modes provided by
RETRO:

Automatic tracing mode, the default mode of RETRO
(Fig. 2), is designed to let the analyst work with the results
of automated tracing methods, and to provide the feedback
on the candidate links produced by the automated methods.

Fig. 2 RETRO user interface and features

Manual tracing/browsing mode, (Fig. 3), provides the ana-
lyst with the ability to browse high- and low-level documents
for the purpose of discovery of any links not found by the
automated tools.

We have explicitly identified 13 features of RETRO avail-
able for analyst use when tracing. We list these features in
Table 1. In Figs. 2 and 3, we indicate the GUI location of
access to these features. The features are briefly described
below.

Tracing all-at-once/One element at-a-time, Feedback.
Two buttons on the main GUI screen, “Trace All” and “Trace
Current,” provide the interface with the selected (at the project
start) IR method for tracing. When pressed for the first time,

Fig. 3 RETRO user interface: BROWSE tab

123

REquirements TRacing On target (RETRO) 197

Table 1 RETRO features

ID Feature

1 Tracing entire dataset at once

2 Tracing elements one at a time

3 Filtering toolbar

4 Filtering option to show top number of links

5 Killing the links that are hidden by the filter

6 Global filtering of candidate link lists

7 Local filtering of candidate link lists

8 View of low-level elements one at a time

9 View of low-level elements in document order

10 View of low-level elements in order of similarity

11 “Freezing” of high-level element tracing

12 Assignment of “Link” and “Not a link” to links

13 Feedback loop

14 Browse tab (Manual tracing mode)

15 Text search in browse tab

16 Adding links to the RTM from the browse tab

the IR method is executed, and the results are displayed on
the screen. Any subsequent presses of either button results
in one round of user feedback processing, followed by the
execution of the IR method on the new dataset representa-
tion. When “Trace All” is pressed, all high-level elements
(except those explicitly “frozen” by the user—see below),
are traced/retraced. When “Trace Current” is pressed, only
the high-level element currently selected in the list of high-
level elements is traced (unless it is “frozen,” in which case
no action is performed).

Filtering of candidate link lists. The filtering tools allow
the analyst to reduce the display of the candidate link lists.
The analyst specifies a threshold value and then only those
low-level documents with relevance weights greater than the
given threshold are displayed. The other way of applying
filtering is by entering the number of low-level documents
that need to be displayed (for example, the “top 5”). The
threshold is controlled by a slider bar that can be moved in
increments of 0.01 from 0 to 1. The selected filter can have
either global or local effect. When the global radio button
is selected, the current filter value applies to candidate link
lists for all high-level elements. When the local radio button is
selected, the current filter value applies only to the candidate
link list of the currently selected high-level element.

View of low-level elements. There are three ways in which
the text of low-level candidate links can be displayed in the
tool. First, the low-level links can be displayed one element at
a time. In this case, only the text of the currently selected low-
level element is displayed. The second option is to display
the text of all candidate links in the order that they appear

in the low-level document. In this case, the currently selected
low-level element is highlighted. Finally, the candidate links
can also be displayed in the order of their similarity/relevance
value, i.e., in the order their IDs appear in the candidate link
list (low-level element list).

Positive/negative feedback. The main purpose of the
RETRO GUI is to solicit analyst feedback on the candidate
link lists suggested by the automated methods. There are two
steps to the feedback loop. As mentioned above, the “Trace
All” and “Trace Current” buttons serve to start the feedback
processing loop. The actual feedback is provided by selecting
a low-level element, right-clicking the mouse and selecting
one of the three options: “Link,” “Not A Link,” or “Default.”
Selection of “Link” constitutes positive feedback: the ana-
lyst is explicitly marking the current link as belonging to the
final RTM. Selection of “Not A Link” constitutes negative
feedback: the analyst explicitly excludes the link from the
final RTM. Selection of “Default” means that the analyst is
not ready to provide explicit feedback on the current link. All
links are marked “Default” when they are first added to the
candidate RTM by the automated methods. The analyst also
has an option of changing “Link” and “Not a link” assign-
ments back to “Default.” “Links” are highlighted in green,
while elements classified as “Not a link” are highlighted in
red.

“Freezing” of high-level elements. Anytime the “Trace All”
button is pressed, the automated methods retrace all
candidate links. To allow analysts more freedom in how
they approach tracing tasks, RETRO allows the analysts to
“freeze” individual high-level requirements—i.e., ensure
that they are not retraced when the “Trace All” button is
pressed. This feature may be useful for analysts who prefer to
trace element-by-element, rather than iteration-by-iteration.
To freeze a candidate link list for a high-level requirement,
the analyst needs to select a high-level requirement, right-
click the mouse button, and select the “Postpone Analysis”
option. The change of high-level element status is reflected
in the list of high-level requirements.

Browse tab functionality. The “Trace” tab of RETRO lets
the analyst evaluate candidate links returned by the auto-
mated methods and fix any discovered errors of commis-
sion. However, the “Trace” tab interface is not convenient
for searching for errors of omission. The “Browse” tab has
been designed specifically to address this shortcoming of the
“Trace” tab. The “Browse” tab consists of the lists of high-
and low-level element IDs, presented in the respective docu-
ment orders, and two text windows, displaying the high- and
low-level requirements. The analyst can browse both docu-
ments, select pairs of high- and low-level requirements and,
if errors of omission are discovered, add newly discovered
low-level elements to the RTM. The list of discovered errors
of omission is shown on the right side of the tab, and the links

123

198 J. Huffman Hayes et al.

Table 2 Task assessment questions

Number RETRO group Manual group

1 The project was simple to complete

2 The project could be completed quickly

3 The project was tedious

4 RETRO was easy to use

5 If I were performing a similar task in the future, I
would want to use a software tool to assist

If I were performing a similar task in the future, I
would want to use a software tool to assist

6 I would rather have completed the project by hand
than use RETRO

I would rather have completed the project by hand
than use a software tool

7 It probably took less time to use RETRO than it
would have to complete the project by hand

It probably would have taken less time to use a
software tool to complete the project than it did
by hand

are added to the candidate link lists in the “Trace” tab, with
the status set to “Link.” RETRO also provides a simple text
search feature for both high- and low-level documents in the
“Trace” tab.

4 Validation

In this section, we present the design of the case study, the
results, as well as evaluation of the results.

4.1 Case study design

The case study was conducted with a group of thirty (30)
students enrolled in a graduate-level requirements engineer-
ing course taught at the University of Kentucky during the
Spring 2006 semester. There were two groups: those doing
tracing manually, and those using RETRO. Students who had
previously performed tracing were identified and put into
the manual group (there were four such students). Next, the
remaining students were divided into two groups of fifteen
(15) students.

Each group was then taken to a separate location, where
they received written instructions and a brief background of
the task. Students were also given a list of common acronyms
used in the data set to assist with the task. Students were not
told anything about the task of the other group. Both groups
were assigned the same tracing task: to trace twenty-two (22)
high-level requirement elements to fifty-two (52) design ele-
ments (a subset of the CM-1 dataset, a NASA scientific instru-
ment [22]). Each group was asked to use a different method.
Group 1 was asked to perform the tracing and produce an
RTM manually. The members of the other group, Group 2,
were given a brief introduction to RETRO and were asked to
use it to complete the tracing assignment.

Students in both groups were asked to record the amount of
time spent on the task. Group 2 students were asked to record

the time spent using the tool, but not to include installation
time. Additionally, a post-experiment survey was given to
students in both groups. The survey consisted of common
questions (to both groups) as well as questions specific to
the nature of the process employed by each group. Table 2
contains the list of questions from the survey we tracked in
this study. In all questions, student response was measured
on the five-point scale: “strongly agree” (5), “agree” (4),
“no opinion” (3), “disagree” (2), and “strongly disagree”
(1).

In addition, students in Group 2 were asked to identify
which of the 14 features of RETRO they used, and report
how helpful the features were, also using a five-point scale
(5, very helpful; 1, annoying).

In the end, 11 students from Group 1 submitted the RTM
and survey, and 12 RTM and survey submissions were col-
lected from Group 2 students. Out of these, we eliminated two
data points from Group 1 (one student submitted an incom-
plete task, two other students worked together—we elected to
treat their submissions as one). In addition, we encountered
differences in the interpretation of the task within Group 2.
Links that are not explicitly marked as a link or not a link
are shown by RETRO as “Default.” There was some confu-
sion as to whether default entries would be considered to be
links (and would become part of the final RTM submitted by
the student) or would not be considered links (and would be
excluded from the final RTM).

We administered a short one question post-task survey,
asking how each student in Group 2 viewed the “Default”
links. Analysis showed that some students did not fully
understand the task, which led to disqualification of three sub-
missions. Based on the treatment of “Default” links, Group 2
was split into two sub-groups, which we refer to as Group 2a
(“default” links included in the RTM) and Group 2b
(“default” links not included in the RTM).

There were four and five students in these sub-groups,
respectively. This left us with nine (9) data points in each of

123

REquirements TRacing On target (RETRO) 199

the groups. Data from the qualitative survey was compiled
and the student RTM submissions were checked against the
answer set (the actual RTM) for the data set. We attempted
to limit internal validity threats by validating the tools and
processes we used for data collection and analysis. Another
possible threat to internal validity is that of selection. It is
possible that some students had prior experience with tracing
and/or with tools such as RETRO that would give them an
unfair advantage in the study. We attempted to mitigate this
risk by placing all students who said they had prior tracing
experience in the manual group (Group 1).

Another possible threat to validity is that students may
have felt that they needed to provide positive feedback on
the surveys (specifically about the tool). While it was empha-
sized to both groups that the task had no bearing on their
grades, it may still have been uncomfortable for students to
criticize work that was known to be related to the research
of the professor. A threat to external validity (generalization
of results) for our work is the use of graduate students. How-
ever, Host et al. [26] found that students perform the same as
professionals on small tasks of judgment.

4.2 Results

Quantitative results. The quantitative results (recall, preci-
sion, and total time to complete the tracing) are shown in
Tables 3 and 4. We note that the CM-1 specification used
for this experiment was equally unfamiliar to all students,
and contained requirements that were hard for students to
trace. We did not expect students to produce accurate RTMs.

Table 3 Comparison of means – two groups

Recall Precision Total time
(min)

Manual group (Group 1) 0.33 0.24 120.67

RETRO group (Group 2) 0.70 0.13 41.88

T test (p value) 0.001 0.01 0.0004

Rather, we wanted to study the process the students used, and
whether or not this process bore any effect on the accuracy.
Table 3 depicts the results when the Manual (Group 1) and
Tool (Group 2) groups were analyzed. Table 4 depicts the
results when we consider three groups: Group 1, Group 2a,
and Group 2b. In each table, we have shown the means as well
as the results of the Student t test (statistical significance). We
ran a two-sided test with samples with equal variance.

As can be seen from Table 3, the students with RETRO
(Group 2) built RTMs that had higher recall (found a higher
percentage of the correct links) than those without RETRO
(70.1% recall versus 33% recall). This result was statisti-
cally significant (as were all results in Table 3). The students
doing manual tracing built RTMs with much higher precision
(24.2% as compared to 12.8%) than those using RETRO.
That is, their final RTMs did not contain as many “false pos-
itives” as RETRO RTMs. Not surprisingly, it took the Man-
ual group almost three times as long to complete the task
(120.66 min as compared to 41.8 min) as the RETRO group.

Examining Table 4, we can see that the students who used
RETRO and assumed that “default” was a link had a much
higher recall than any other group, a statistically significant
result. Precision was much higher for the RETRO group who
believed that “default” was not a link than for those who
believed it was a link (19.8 vs. 4%), and this was statisti-
cally significant. This difference is explained by the fact that
many of the default links (counted for Group 2b but not for
Group 2a) were false positives, however, default links also
captured many true links. There was not a statistically signif-
icant difference in precision between Group 2a and Group 1,
however (t test of 0.30). The total time was not statistically
different between the two sub-groups using RETRO, but was
statistically significant between both RETRO subgroups and
the manual group.

Use of RETRO features. The results of our survey on
RETRO feature use, conducted for Group 2 students, is shown
in Table 5. Each column lists the students’ assessment of use-
fulness of specific features of RETRO on the 1–5 scale, with
5 being “useful” and 0 meaning that the student reported not

Table 4 Comparison of
means – three groups Recall Precision Total time

(min)

RETRO Gr, Default = Link (Group 2a) 0.979 0.040 42.5

RETRO Gr, Default = No link (Group 2b) 0.48 0.199 41.25

Manual Gr. (Group 1) 0.330 0.243 120.667

T test (Group 2a and 2b) 0.0002 0.014 0.970

T test (Group 2a and 1) 9 × 10−09 3 × 10−05 0.002

T test (Group 2 b and 1) 0.019 0.301 0.005

123

200 J. Huffman Hayes et al.

Table 5 RETRO features used
by Group 2

Feature: 1. Trace all; 2. Trace
one; 4, Global filtering; 5. Local
filtering; 6. Display: one link;
7. Display: document order;
8. Display: by similarity;
9. Freeze elements; 10. Yes/no
links; 11. Feedback; 12. Browse
tab; 13. Text search in browse;
14. Add links in Browse tab
a Group 2a students (A.E.F.I)

Student 1 2 4 5 6 7 8 9 10 11 12 13 14

Aa 5 4 4 4 5 2 4 0 4 0 3 4 0

B 0 4 0 0 3 4 5 0 4 0 4 0 0

C 5 4 5 4 0 5 5 4 4 5 5 5 5

D 4 4 0 0 5 5 5 0 5 0 5 0 5

Ea 5 4 4 4 0 0 0 0 0 0 0 0 0

Fa 5 0 4 0 5 5 5 0 4 0 0 0 0

G 4 3 0 0 4 0 0 0 2 0 4 0 0

H 3 3 3 3 3 4 4 3 3 3 3 3 3

Ia 5 4 5 4 3 4 4 5 5 4 5 3 2

used 8 8 6 5 7 7 7 3 8 3 7 4 4

Sum 36 30 25 19 28 29 32 12 31 12 29 15 15

Mean 4.5 3.75 4.16 3.8 4 4.14 4.57 4 3.87 4 4.14 3.75 3.75

using the feature (for convenience, we repeat the feature list
from Table 1, sans #3, in the right-hand side of Table 5).

We observe that five students used over half of the tracked
features (with the mean number of features used being 8.55,
and median being 8), while three students used only 4–5
features. Eight out of nine students used “Trace All” and
“Trace Current” features and the assignment of “yes” and
“no” links. All but two students visited the “Browse tab,” but
only four students tried either text searches or link assignment
in that tab.

Relevance feedback loop, perhaps the most powerful fea-
ture of RETRO, was tried the least—only three students used
it. Finally, we see that students had an overall positive impres-
sion of the features they used: no feature was rated lower than
3.75 on average.

Task assessment. Tables 6 and 7 show student answers to sur-
vey questions specified in Table 2. Group 2 students (Table 6)
tended to agree with most of the statements presented to them.
In particular, students found the assignment relatively sim-
ple (3.6), agreed that it could be completed relatively quickly
(3.4), agreed that RETRO was reasonably easy to use (3.33),
and specified that they would prefer to use a software tool
for similar tasks in the future (3.67).

In addition, they were in mild disagreement with the state-
ment that the assignment was tedious (2.56), and stated that
they would not have preferred to complete the assignment by
hand instead (2.22). Students from Group 1 similarly agreed
that the task was relatively simple (3.44). At the same time,
Group 1, unlike Group 2, thought that the task could not
be completed quickly, and declared it to be rather tedious
(3.67).

Additionally, they all voiced strong support for the use of
a software tool for such projects in the future, and expressed a
strong opinion that their task could have been accomplished
faster with the use of a software tool.

Table 6 Survey responses (Group2: RETRO)

Student Q#1 #2 #3 #4 #5 #6 #7

Aa 4 4 2 4 4 2 4

B 4 4 3 4 4 3 3

C 5 4 2 4 4 2 4

D 3 2 3 2 3 4 3

Ea 3 4 2 2 4 2 4

Fa 3 3 3 2 4 2 4

G 4 4 4 4 3 3 3

H 3 2 2 4 4 1 4

I a 4 4 2 4 5 1 4

Mean: 3.67 3.44 2.56 3.33 3.89 2.22 3.67

a Group 2a students (A.E.F.I)

Table 7 Survey responses (Group 1: manual)

Student Q#1 #2 #3 #5 #6 #7

J 4 2 4 5 2 4

K 4 2 4 4 2 4

L 4 2 2 5 1 5

M 2 2 4 4 2 4

N 4 4 3 4 2 5

O 2 3 4 4 2 4

P 4 2 4 5 2 5

Q 2 2 4 5 3 5

R 5 2 4 5 2 4

Mean: 3.44 2.33 3.67 4.56 2 4.44

4.3 Evaluation

The study that we undertook had two components: a quanti-
tative component and a qualitative component. We observed
that students who used RETRO and decided for themselves

123

REquirements TRacing On target (RETRO) 201

that only links explicitly marked “yes” should be reported
produced the most accurate results: better recall than Group 1
students, with similar precision. This approach to tracing with
RETRO is the correct one for the default RETRO use case—
tracing of artifacts for verification and validation purposes.

From the usability standpoint, we observed that whenever
students chose to use specific features of RETRO, they, in
general, found them useful. We also observed that the major-
ity of students chose to use most of the RETRO features
available to them. Perhaps the only negative observation is
our relative lack of data about the use of relevance feedback
in tracing: this is an issue we are planning to concentrate on
in future experiments.

We also observed that users of RETRO, in general, felt
much better about the task, and felt much better about their
ability to deal with the task than students who had to trace
manually. The latter group, on the other hand, expressed very
strong feelings about the tedium of the assignment and about
their desire to use an automated tool for future tasks.

5 Related work

Ramesh et al. [10] propose a reference model for require-
ments tracing. In [10], Ramesh elaborates on the factors influ-
encing requirements traceability practice. Spanoudakis [11]
uses heuristic traceability rules to trace textual requirements
to object models. Cleland-Huang et al. [12] propose an event-
based traceability technique to perform impact analysis on
proposed changes. Using a prototype tool, Zisman et al. [13]
demonstrate their approach for automatic generation of bidi-
rectional traceability links.

Schneidewind defines maintenance as the process of
designing and integrating consistent changes to existing soft-
ware [14]. Traceable software is implicitly easier to maintain
because one can easily see how portions of requirements,
design, and code relate through the RTM. Through tracing,
one can see how a change introduced during maintenance
will affect other code portions. Bubel and Balser describe
requirements traceability as a “continual alignment between
the stakeholder requirements and system evolution. . . after
each modification” and show how context-based constraints
(CoCons) can support automation of this process [15].
Research on methods used to trace artifacts for maintenance
purposes has also been completed using model driven archi-
tecture where model dependencies are encoded and model
relationships help ensure that maintenance changes do not
introduce inconsistencies [16].

Just as side-effects analysis [17,18] is valuable during
maintenance to identify the impact of code changes on the
execution process, tracing can help identify how changes
within one phase will affect artifacts in other phases of the
software life cycle. Work has been completed on tracing par-
ticular code features in order to benefit the maintenance phase

of the software life cycle [19,20]. De Lucia et al. address
the usefulness of requirements tracing tools over discovering
related artifacts by hand during maintenance in [21]. Like-
wise, Greevy and Ducasse [20] apply tracing practices to
discover change impact during maintenance.

Antoniol et al. [24,25] and Marcus and Maletic [27] have
used a variety of traditional IR methods (vector space retrieval
and probabilistic IR for Antoniol and latent semantic index-
ing for Marcus and Maletic) to automate tracing of tex-
tual artifacts to code. Their approach is similar to our work
on tracing between textual artifacts [1–3], which led to the
creation of RETRO.

6 Conclusions and future work

As stated in the introduction, the requirements traceability
matrix is an important artifact for software maintenance.
Unfortunately, it is not often constructed or kept up to date.
We believe that automated methods for generating RTMs
(and hence regenerating RTMs when changes are introduced)
can thus help to improve software maintenance. We under-
took a study to see if our traceability tool, RETRO, would
ease the burden of RTM generation. Further, we wanted to
examine the usability of the new version of RETRO.

We found that overall, students using RETRO “correctly”
(see Sect. 4.3) produced the most accurate results. We also
found that the majority of the tracked RETRO features were
used by the students and were deemed useful by them. In
addition, the surveys showed that the RETRO group liked
the tool and felt that it made the task faster. Manual tracers
wished that they had a tool and found their task to be tedious
and time consuming.

We cannot make broad generalizations of these results as
we undertook a small study with a small dataset using grad-
uate students. However, the results do indicate that informa-
tion retrieval traceability tools, such as RETRO, can assist
with RTM generation, which is an important part of soft-
ware maintenance. Based on this study, items for future work
include improving the precision of RETRO methods and sim-
plifying the tracing process.

Acknowledgments This work is sponsored by NASA under grant
NNG05GQ58G. Our thanks to Stephanie Ferguson, Marcus Fisher, Wes
Deadrick, Ken McGill, and Tim Menzies. We thank the students of
CS 617, Spring 2006. We thank Mike Chapman and the Metrics Data
Program for access to the CM-1 dataset. We also thank Sarah Howard
and James Osborne, who worked on early versions of the software used
for the evaluation.

References

1. Huffman Hayes J, Dekhtyar A, Osborne J (2003) Improving
requirements tracing via information retrieval. In: Proceedings,
international requirements engineering conference (RE’2003),
September 2003, Monterey, pp 151–161

123

202 J. Huffman Hayes et al.

2. Huffman Hayes J, Dekhtyar A, Sundaram KS, Howard S (2004)
Helping analysts trace requirements: an objective look. In:
Proceedings, international requirements engineering conference
(RE’2004), September 2004, Kyoto, Japan, pp 249–261

3. Huffman Hayes J, Dekhtyar A, Sundaram KS (2006) Advancing
candidate link generation for requirements tracing: the study of
methods. IEEE Trans Softw Eng 32(1):4–19

4. Yadla S, Huffman Hayes J, Dekhtyar A (2005) Tracing require-
ments to defect reports. Innov Syst Softw Eng A NASA J 1(2):116–
124

5. Huffman Hayes J, Dekhtyar A, Sundaram S (2005) Text mining for
software engineering: how analyst feedback impacts final results.
In: Proceedings of workshop on mining of software repositories
(MSR), associated with ICSE 2005, St. Louis, MO, May 2005,
pp 58–62

6. Huffman Hayes J, Dekhtyar A, Sundaram S (2006) Advances
in dynamic generation of traceability links: two steps closer to
full automation? Proceedings of IEEE International conference on
Requirements Engineering, October 2007, New Delhi

7. Baeza-Yates R, Ribeiro-Neto B (1999) Modern information
retrieval. Addison-Wesley, Reading

8. Huffman Hayes J, Dekhtyar A, Sundaram KS (2005) Improving
after the fact tracing and mapping to support software quality pre-
dictions. IEEE Softw 22(6):30–37

9. McGill K, Deadrick W, Hayes J, Dekhtyar A (2006) Houston, we
have a success story: technology transfer at the NASA IV&V facil-
ity. In: Proceedings, international workshop on technology transfer
in software engineering (WOTTSE’2006), Shanghai, China, May
2006

10. Ramesh B (1998) Factors influencing requirements traceability
practice. Commun ACM 41(12):37–44

11. Spanoudakis G (2002) Plausible and adaptive requirement trace-
ability structures. In: Proceedings 14th international conference
on software engineering and knowledge engineering. Ischia, Italy,
July 2002, pp 135–142

12. Cleland-Huang J, Chang CK, Sethi G, Javvaji K, Hu H, Xia J (2002)
Automating speculative queries through event-based requirements
traceability. In: Proceedings of the IEEE joint international require-
ments engineering conference (RE’02). Essex, Germany, 9–13
September, 2002, pp 289–296

13. Zisman A, Spanoudakis G, Pérez-Miñana E, Krause P (2003) Trac-
ing software requirements artefacts. In: Proceedings 2003 interna-
tional conference on software engineering research and practice
(SERP 2003), Las Vegas, June 2003

14. Schneidewind NF (1987) The state of software maintenance. IEEE
Trans Softw Eng 13(3):303–310

15. Bubel F, Balser M (2005) Tracing cross-cutting requirements via
context-based constraints. In: Proceedings ninth European con-
ference on software maintenance and reengineering (CSMR’05),
pp 80–90

16. Ivkovic I, Kontogiannis K (2004) Tracing evolution changes of
software artifacts through model synchronization. In: Proceed-
ings 20th IEEE international conference on software maintenance
(ICSM’04), pp 252–26

17. Rountev A (2004) Precise identification of side-effect-free methods
in Java. In: Proceedings 20th IEEE international conference on
software maintenance (ICSM’04), pp 82–91

18. Ryder BG, Landi W, Stocks P, Zhang S, Altucher R (2001) A
schema for interprocedural modification side-effect analysis with
pointer aliasing. ACM Trans Program Lang Syst 23(2):105–186

19. David Eisenberg A, De Volder K (2005) Dynamic feature traces:
finding features in unfamiliar code. In: Proceedings international
conference on software maintenance (ICSM’05), pp 337–346

20. Greevy O, Ducasse S Girba T (2005) Analyzing feature traces to
incorporate the semantics of change in software evolution analysis.
In: Proceedings international conference on software maintenance
(ICSM’05)

21. De Lucia A, Fasano F, Francese R, Oliveto R (2004) Recovering
Traceability links between requirement artefacts: a case study. In:
Proceedings 16th international conference on software engineer-
ing and knowledge engineering—workshop on knowledge oriented
maintenance, Banff, Alberta, Canada, Knowledge Systems Insti-
tute, USA, pp 453–456

22. MDP Website, CM-1 Project, http://mdp.ivv.nasa.gov/mdp_
glossary.html#CM1

23. Schach SR, Jin B, Yu L, Heller GZ, Offutt J (2003) Determining the
distribution of maintenance categories: survey versus management.
Empir Softw Eng 8:351–366

24. Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002)
Recovering traceability links between code and documentation.
IEEE Trans Softw Eng 28(10):970–983

25. Antoniol G, Caprile B, Potrich A, Tonella P (1999) Design-code
traceability for object oriented systems. Ann Softw Eng 9:35–58

26. Høst M, Regnell B, Wohlin C (2000) Using students as subjects—
a comparative study of students and professionals in lead-time
impact assessment. Empir Softw Eng 5(3):210–214

27. Marcus A, Maletic J (2003) Recovering documentation-to-source
code traceability links using latent semantic indexing. In: Proceed-
ings of the twenty-fifth international conference on software engi-
neering (ICSE), pp 125–135

123

	REquirements TRacing On target (RETRO): improving software maintenance through traceability recovery
	Abstract
	Introduction
	IR for tracing
	RETRO
	Evolution of RETRO
	Architecture of RETRO
	Functionality of RETRO
	Validation
	Case study design
	Results
	Evaluation
	Related work
	Conclusions and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

