CoLUA: Automatically Predicting Configuration
Bug Reports and Extracting Configuration Options

Wei Wen, Tingting Yu, Jane Huffman Hayes
Department of Computer Science and Engineering, University of Kentucky, Lexington, KY 40508, USA
wei.wen0@uky.edu, {tyu, hayes}@cs.uky.edu

Abstract—Configuration bugs are among the dominant causes
of software failures. Software organizations often use bug-
tracking systems to manage bug reports collected from developers
and users. In order for software developers to understand and
reproduce configuration bugs, it is vital for them to know whether
a bug in the bug report is related to configuration issues; this is
not often easily discerned due to a lack of easy to spot terminology
in the bug reports. In addition, to locate and fix a configuration
bug, a developer needs to know which configuration options
are associated with the bug. To address these two problems, we
introduce CoLUA, a two-step automated approach that combines
natural language processing, information retrieval, and machine
learning. In the first step, CoLUA selects features from the
textual information in the bug reports, and uses various machine
learning techniques to build classification models; developers can
use these models to label a bug report as either a configuration
bug report or a non-configuration bug report. In the second step,
CoLUA identifies which configuration options are involved in the
labeled configuration bug reports. We evaluate CoLUA on 900
bug reports from three large open source software systems. The
results show that CoLUA predicts configuration bug reports with
high accuracy and that it effectively identifies the root causes of
configuration options.

I. INTRODUCTION

Modern software systems are highly-configurable, allowing
users to customize a large number of configuration options
while retaining a core set of functionality. For example, a user
can augment their browser with sophisticated add-ins, change
their Eclipse build settings (i.e., configuration options) to use
different versions of the JDK or specified libraries depending
on the project, build a specific Linux kernel configuration,
etc. While such customizability provides benefit to users, the
complexity of the configuration space and the sophisticated
constraints among configuration settings complicates the pro-
cess of testing and debugging. Thus, it is not surprising that
many configuration bugs remain undetected and later surface
in the field. A study by Yin et al. [47] shows that up to 31%
of bugs are related to misconfiguations in several open source
and commercial software systems [47]], where a majority of
misconfigurations (up to 85.5%) are due to mistakes in setting
configuration options.

Software organizations use bug-tracking systems to manage
bug reports collected from developers and users. A developer
who is assigned to a given bug report first needs to determine
the type of the bug, i.e., whether this bug is configuration-
related or not. For example, in Apache, bug reports related
to configurations are explicitly labeled as configuration bugs.
The next step is to use the anomalous configuration options

to reproduce the bug. However, developers with insufficient
domain knowledge may incorrectly label a bug report or spend
time determining the bug type (time that could have been
well spent elsewhere). In addition, to understand the bug,
developers often need to look through the bug descriptions,
which can be lengthy, verbose, and involve multiple developers
and users. In fact, Rastkar et al. found that almost one-
third of the bug reports in the open source projects Firefox,
Thunderbird, and Eclipse Platform in the 2011-2012 period
were 300 words or longer (deemed lengthy) [37].

Further, it is often non-trivial to determine which configura-
tion options are relevant in order to reproduce a bug. For exam-
ple, if a developer knows that a bug report describes a config-
uration bug related to javascript in a browser application, he or
she may not be able to quickly determine what the real name
of the configuration option is in the configuration database
(e.g., Browser.urlbar.filter. javascript). If the
developer wants to fix this bug, he or she may spend an
exorbitant amount of time searching through the configuration
database to find which option is relevant. Recent work by
Wiklund et al. reported that the majority of the impediments
for developers stemmed from the failure to figure out the
correct configuration options and environment settings [42].
A user-study conducted by Wang et al. [41] indicates that the
average person time for finding the cause of a bug from reading
a bug report is 9-15 minutes.

Therefore, there is a need for an effective technique to
reduce the manual effort required to label configuration bug
reports and to identify the root cause configuration options.
There has been some research on debugging and diagnosing
configuration bugs [36]], [49]. For example, Zhang et al. [49]]
propose a technique to diagnose crashing and non-crashing
errors related to software misconfigurations. These techniques,
however, have focused on the implementation with the as-
sumption that the bugs are already labeled as configuration
bugs. Xia et al. [44] use text mining to label configuration bug
reports related to system setting and compatabilities. Never-
theless, their technique neither predicts bug reports related to
misuse of configuration options nor extracts such configuration
options.

In this paper, we propose a framework, CoLUA
(Configuration bug Learner Uncovers Approximated options),
that aims to improve configuration-aware techniques and
help ease developers’ process of debugging and reproducing
bugs that need specific configurations for exposition. CoLUA

focuses on configuration bugs due to incorrect settings of
configuration options. Given a bug report, COLUA determines
whether it is a configuration bug, and if it is, the approach
automatically suggests configuration options to help develop-
ers reproduce the bug. CoLUA is comprised of two steps,
combining machine learning and natural language processing
(NLP) techniques. First, CoLUA trains classification models
on the historical bug reports with known labels to classify a
new bug report as either a configuration bug report or a non-
configuration bug report. In the second step, CoLUA applies
Information Retrieval (IR) and NLP to the configuration bug
reports. It then parses both configuration options and the query
(the bug report of interest). The queries and configuration op-
tions are then matched, ranked, and returned to the developer.

CoLUA provides at least two benefits. First, developers can
label configuration bug reports in an automated and timely
manner. Second, with the configuration query component,
CoLUA allows developers to approximate configuration op-
tions that are relevant to the bugs. This can improve the
configuration debugging and diagnosis process. Note that
CoLUA does not substitute for, but complements, existing
configuration-aware debugging techniques [36], [49]]. Such
techniques can use CoLUA to predict whether a bug is
configuration-related, and then decide the appropriate course
of action. Also, the configuration options identified by CoLUA
can be used to narrow down the list of candidate root causes.

To evaluate CoLUA, we apply the approach to three popular
open source projects (i.e., Mozilla, Apache, and MySQL).
In total, we analyze 900 bug reports using three classifica-
tion techniques (Naive Bayes, Decision Tree, and Logistic
Regression). We measure the performance of the approaches
in terms of the F-measure. Our results show that CoLUA is
effective at discriminating configuration bug reports from non-
configuration bug reports. The average F-measure is 0.73 over
three techniques across all three subjects, compared to 0.33
for the baseline method of ZeroR. In addition, CoLUA is able
to extract configuration options from configuration bug reports
with a high success rate.

In summary, this paper contributes the following:

o A framework for learning natural-language models to
automate the classification of configuration bug reports.
The techniques used to build models are domain-specific
thus accounting for the unique characteristics of the
configuration software systems.

o A first approach that can automatically extract configu-
ration options that are relevant to bugs from bug report
descriptions.

o An extensive empirical evaluation on 900 bug reports
from three large open source software systems that shows
that our approach is effective.

In the next section we present a motivating example and
background. We then describe the CoLUA approach in Sec-
tion Our empirical study follows in Sections [[V] and
followed by discussion in Section We present related work
in Section and end with conclusions in Section [VII]

Hans Schmucker 2008-02-15 12:51:45 PST Description

User-Agent:
Minefield/3.0bdpre
Build Identifier: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9bdpre) Gecko/2008021404
Minefield/3.0bdpre

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9bdpre) Gecko/2008021404

javascript: urls that return a html page when visited currently produce a history entry just like normal
urls... while this may be desired for the classical history view, it's very dangerous that these urls end
up in the address bar suggestion list as these entries can be made to look just like the real page,
including FavIcon, Title and a pseudo url that only differs from the real url in that http:// is replaced
with javascript:'//. However opening the javascript: url will execute it in the scope of the currently
viewed page, thereby exposing all sensitive data on the page to the javascript code. I think javascript:
urls should only be viewed in the suggestion list when they actually are bookmarklets and the user has
made a conscious effort to add them, not when he just happened to come by one (which he may not even has
noticed, the javascript: url in the sample is opened by an onclick handler and redirects to the correct
page).

A simple filter for the suggestion box to not include history entries that start with javascript: should
already be sufficient.

Fig. 1. A configuration bug report.
II. MOTIVATION

A configurable system is a software system with a core
set of functionality and a set of variable features which are
defined by a set of configuration options [23]. A configuration
option can be specified in a configuration file, source code,
and/or in a user input option. A configuration database (also
called a configuration model) consists of all the configuration
options in an application. Constructing an effective configu-
ration model has been well discussed in recent work [23]. In
this work, we assume that the configuration model is known.
Changes to the value of a configuration option may change
the program’s behavior in some way. If such changes cause
the system to behave incorrectly, a configuration bug occurs.
In fact, there are several categories of configuration-related
issues, including 1) software bug in the function of handling
configuration parameters (e.g., missing implementation for
case items), 2) configuration error due to wrong value selection
by users, 3) configuration error due to default setting assigned
by developers, and 4) configuration error in external software,
libraries, or operating systems. In this work, configuration bugs
refer to categories 2) and 3). We use Firefox, a popular web
browser and also a highly-configurable system, to motivate our
approach.

In Firefox, when the configuration option O; =
Browser.urlbar.filter. javascript is set to false,
it allows “javascript:” URLs to appear in the autocomplete
dropdown of the location bar. This can cause potential
security threats. Figure 1 shows a bug report associated with
the configuration option Op. This bug involves 22 comments
and took 21 months to fix. In fact, at the end of the 21
months, a single change to the value of this configuration
option fixed the problem.

Suppose that an inexperienced developer is assigned to
work on this bug. He or she may spend much time figur-
ing out that it is a configuration bug. In such a case, the
developer has to inspect the source code, try various inputs
and configurations to hopefully reproduce, locate, and fix the
bug. Even if an experienced developer is assigned to work
on this bug and notices that it is related to configurations
based on the system’s specific behavior (e.g., mouse scrolling
events), she may not be able to quickly determine the real
configuration option from the configuration database (i.e., O1)
as there are approximately 1650 possible configuration options
in the configuration model of Firefox. Therefore, to ease the
process of configuration debugging and diagnosis, we need

Step 1. Configuration bug report prediction

Step 2. Configuration option extraction

Bug Report | NLP
w/ labels
1 N Topk \ "
Feature features Machine |ciassifier Bug Report
Selection Learning w/o labels
b,

Database

1
}
1
1
! Config.
1
1
}
1
1

config. Top n

bug report . config. options
L.I Config. Opt.
Extraction

Non-config.
bug report

Fig. 2. The overview of our CoLUA framework.

new techniques that can identify a configuration bug report
and link the bug to specific configuration options.

We have observed that natural language descriptions of a
bug report provide information to indicate whether a bug
is related to configuration options. In the running example,
the word “bookmarklets” is likely to be an indicator of a
configuration problem. The word “javascript” ties to the name
of a configuration option O; obtained from the configuration
model. Based on these observations, we decided to use nat-
ural language processing (NLP) techniques that process text
reports and converts them into individual words to be used as
features in machine learning. Developers can use the trained
machine learning classifiers to label a bug report as either a
configuration bug report or a non-configuration bug report.
Also, with the help of NLP and information retrieval (IR),
the classifier returns a list of ranked configuration options
extracted from the configuration bug reports to the developers.
In our running example, O; is ranked at the top of the list,
followed by the Javascript.allow.mailnews option
and Mailnews.start page.url option.

III. APPROACH

Figure 2] shows an overview of the CoLUA framework.
CoLUA consists of two steps. In the first step, CoLUA applies
NLP to extract textual features from a set of training bug
reports, i.e., bug reports with known labels (configuration
vs. non-configuration). CoLUA then uses Chi-Square [38]],
[45]], a state-of-the-art feature selection technique, to select
a subset of relevant textual features to improve the prediction
performance and avoid overfitting [45]. Next, CoLUA applies
machine learning to train classifiers based on the selected
features and labeled bug reports. The trained classifiers are
then applied on the unlabeled bug reports to classify a bug
report as either a configuration bug report (CBR) or a non-
configuration bug report (NCBR). The CBRs are retained
for further processing (i.e., configuration option extraction),
whearas the NCBRs are sent to the developers. In this work,
we investigate three classification techniques: naive Bayes,
decision tree, and logistic regression.

In the second step, the configuration option extraction com-
ponent takes the labeled CBRs and the configuration database
as inputs. A configuration database contains all configuration
options for an application. Next, the configuration extraction
component invokes the NLP procedures to find the similarities

between the bug reports and each of the configuration options.
The output of this step is a ranked list of configuration options
that are likely the root cause of the configuration bug (with
a value showing the score). We describe the two steps in the
sections that follow.

A. Feature Selection

The feature selection component first creates the term fre-
quency matrix by analyzing the texts of bug reports. To do this,
CoLUA performs several basic NLP text parsing steps to retain
terms that are most likely to be the indicators of CBRs and
NCBRs. CoLUA next applies chi-Square and bigram to select
high informative terms as features for training classifiers.

1) Basic Text Parsing: The basic steps involved in NLP
are word tokenization, stopword removal, stemming, lemma-
tization, part-of-speech tagging, and chunking and chinking.
In this work, the basic text parser chooses several com-
monly used NLP steps [44], [50], including word tokenization,
stopword removal, and lemmatization, to convert bug reports
into a “bag of words” as preparation for feature selection.
The process of splitting paragraphs into sentences or splitting
sentences into words is referred to as word tokenization. Since
words are frequently used as features in machine learning,
specifically text mining, word tokenization is often necessary.

CoLUA uses NLP to parse terms (i.e., words and phrases)
from each bug report to create a ferm frequency matrix. A
bug report (b) contains a bag of words and each word in b is
a term t. Term frequency (tf: 4) is defined as the number of
occurrences of a term ¢ in the document d. If ¢ is not in d, the
value of ¢f; 4 is zero. For example, the term “config” occurs
one time in bug report 1 , zero times in bug report 2, and two
times in bug report 3.

After this step, however, there still exist some words, such
as the, this, when, me, that are common in English but do
not provide domain relevant information in our context. These
words are commonly referred to as stop words. The parser
filters stop words prior to further processing, using a stop
words list. The terms in the stop words list are not entered
into the term frequency matrix. However, the default stopword
corpus in the NLP component (e.g., NLTK package) is not
sufficient. To address this problem, CoLUA plugins a domain-
specific dictionary, including stopwords that are specific to bug
reports (e.g., user names) and applications (e.g., firefox, org).

These words carry little discriminating power when it comes
to configurations.

While the stopword removal can shorten the texts without
losing the core information, the texts may still fail to match
if they have the same concept using words in different forms
or use a different word with similar meaning. As such, we
apply stemming and lemmatization. Stemming is the process
of removing the ending of a derived word to get its root form.
For example, “configurations” becomes ‘“configur.”’. Lemmati-
zation, on the other hand, always returns the true root form
of a word. For example, developers may write “preference” as
“pref,” and “configuration” as “config.” We return such words
to their original form. Therefore, the term frequency matrix is
updated with respect to the converted words.

2) Feature Selection Using Chi-Square: After textual fea-
tures are extracted from the training bug reports, We use Chi-
Square [38], [45] to select top k features that are specific
for predicting configuration bug reports. Chi-Square measures
how common a feature is in a particular class (label) compared
to how common it is in other classes (labels). The higher
the Chi-Square score, the more likely the feature is to be
associated with the class. For simplicity, assume that there
are bug reports of two classes CBR and NCBR. Let n;; be
the counts that the feature (say w) in consideration occurs in
CBR, n;, be the counts that w occurs in reports of NCBR,
N,; be the counts of all features except w that occur in reports
of class CBR, n,, be the counts of all features except w that
occur in class NCBR, and n,, be the counts of all features
that occur in reports of both types. The Chi-Square score that
shows how likely this feature is associated with type C BR is
calculated as:

T X (Tii X Moo — Moo X 19)
(Mii+1i0) X (i Mo) X (Tio+T000) X (Mio+T00)

Chi_sq_score =

The score that shows how likely w is associated with class
NCBR can be calculated similarly.

A feature (term) is an n-gram: a contiguous sequence of n
items from a given sequence of text. In this work, we investi-
gate the effectiveness of using unigrams (single word tokens)
and bigrams (two consecutive word tokens) as features (i.e.,
n < 3) because they are commonly used in bug report mining
techniques [6], [32], [39]. Bigram identifies two words that are
likely to co-occur. For example, a bug report containing “not
configuration” indicates that it is not related to configuration
bugs. If individual words are used as the only features, this
report may be incorrectly classified as configuration-related.
Thus, including bigrams may increase the chance of correctly
classifying bug reports. The likelihood of two words occurring
together is calculated using Chi-Square. The only change is
that now instead of the association between a word and a label,
the association is between two words.

B. Ranking

After we apply Chi-Square and bigram to compute the
scores for each unigram and bigram, we rank these scores from
high to low to generate a ranked list. The higher the score,
the more important the unigram/bigram is for distinguishing a

label. We select unigrams and bigrams whose feature selection
scores are in the top k of the ranked list and remove the others.
In this way, we reduce the number of features in the model
building phase and also in the prediction phase. Research has
showed that the k value ranging from 30 to 200 is useful for
prediction [[1]]. As such, by default we used 100 for the value
of k. The selected features consist of m% unigrams and n%
bigrams of the total k features. By default, m is 80 and n is
20. We further show how performance varies across different
numbers of selected features and across different ratios of
unigrams to bigrams in Section

C. Machine Learning

After selecting the features in the labeled bug reports,
CoLUA uses machine learning to build classifiers and uses
them to help identify a new bug report as CBR or NCBR.
In the prediction phase, the classifier is then used to predict
whether a bug report with unknown label is a configuration
bug or not.

D. Extracting Configuration Options

Configuration option extraction takes as inputs both CBRs
and a configuration database of an application.

1) Splitting Configuration Options: CoLUA extracts con-
figuration options from the user manuals of the stud-
ied system to form a configuration database. Once we
have the configuration options, we split them into sets
of words. The configuration options can use camel
case or have dots or underlines separating the words.
In processing configurations, we split the words by
camel case, period (.), underscore (_), and dash(-), such
as Browser.chrome.image_icons.max_size and
Browser.urlbar.filter. javascript. The words
are restored to their root forms with lemmatization.

2) Matching and Ranking: Configuration bug reports are
first processed as described in Section except that Chi-
Square is not employed. Next, the splitting method described
above is applied to the configuration database. Once we have
parsed both the configuration database and the bug reports,
the next step is to suggest configuration options that are most
relevant to each CBR. We compute similarity between a bug
report and a configuration option. To do this, we use the term
frequency-inverse document frequency (tf-idf) algorithm [29]
based on the term frequency matrix described in Section
Tf-idf has been widely used in information retrieval [40] to
measure similarity between queries and documents, so we use
it to link a bug report to a configuration option.

Here, each configuration option is considered a document
d that contains a bag of words using the splitting method in
Section A configuration database that consists of N
configuration options forms a document corpus. As mentioned
in Section term frequency (tf: q) is defined as the
number of occurrences of a term t in the document d. If ¢
is not in d, the value of tf; g is zero. Document frequency
(dfy) is defined as the number of documents in the corpus that
contain the term ¢. If ¢ does not exist in any documents in the

TABLE I
RANKING TERMS IN THE EXAMPLE CONFIGURATION OPTION

term tf df idf tf-idf
browser 1 28 0.16 | 0.16
url 1 31 0.18 | 0.18
multiple 0 - - -
filter 1 18 0.15 | 0.15
Jjavascript | 1 22 0.14 | 0.14

corpus, df; is equal to zero. The inverse document frequency
(¢dfy) is used to reduce the effect of terms that appear in many
documents; it is defined as:

idfy = 109%
So a large value for df; makes idf; small. This indicates that if

a term exists in many documents, it carries less discriminating
power. The weight ¢ f-idf for a term ¢ in d is defined as:

tf‘idft,d = tft,d X idfy

As we can see, a term in d would have a heavier weight if it
occurs many times in just a few documents (both ¢ f; 4 and idf;
are large). Finally, we calculate the similarity score by adding
the weights of all terms that occur in both the bug report and
configuration options, which is defined as:
similarity(b,d) = > tf —idftq
teb

Consider the example in Section where the bag of
words, after parsing, there are a list of terms for the
bug report b: {browser, url, multiple, filter, javascript,
...}. The {browser, url, bar, filter, javascript} is the
corresponding document d (i,e., the configuration op-
tion Browser.urlbar.filter.javascript). Table [
shows the statistics of each term in b. The overall similarity
score is the sum of the weights of all the terms (0.16 + 0.18
+ 0 + 0.15 + 0.14 = 0.64). The term multiple fails to match
any word in d and contributes zero weight. After assigning
each configuration option a similarity score for a given bug
report, all configuration options are ranked in decreasing order
with respect to the score. The top n preferences are sent to the
users. In our study, n is 10.

E. Implementation

CoLUA begins by extracting useful information from a
webpage (given the URL) that contains bug reports, because
the webpage can contain extraneous information (e.g., version,
reporters name, priority) that needs to be excluded. A text file
is thus built that contains only the relevant information from
the webpage; we generally include the title and the comment
text from the webpage. We use Python’s NLTK package to
extract features from the text files. In the configuration option
extracting component, we use Sklearn to calculate similarity
scores. Specificially, the APl TfidfVectorizer converts
documents to a matrix of #f-idf. We also include both unigrams
and bigrams as the API to help increase the chance of finding
the right similarities between bug reports and configurations.

TABLE II
SUBJECTS AND THEIR CHARACTERISTICS

CBR
labeled | unlabeled

NCBR
labeled |unlabeled

Apps versions |# Options

Apache |v1.3—v2.4| 1,145 100 50 100 50

MySQL |v5.0-v5.7| 1,429 100 50 100 50

Mozilla | v18-v47 1,650 100 50 100 50

We use the classes BigramAssocMeasures,
which contains an implementation of Chi-Square and
BigramCollocationFinder in the NLTK modules
metrics and collocations to identify the highly informative
words and commonly occurring bigrams. The selected
features are arranged in the form of a dictionary with the
words as the key and the assigned values as the values of the
keys. The format we use is {word: true}, where word is
the word selected and the value is t rue. We uniformly use
True as the value for a word (the key) to indicate that a
word appears in that report.

IV. EMPIRICAL STUDY

We perform a case study aimed at evaluating CoLUA that
addresses three research questions. Supporting data on the
queries used and the associated results can be found on our
websitd'|

RQ1: How effective is CoLUA at classifying bug reports into
CBRs and NCBRs using different classification models?

RQ2: Can the learned model be used to predict new configu-
ration bug reports?

RQ3: How effective is CoLUA at finding the correct config-
uration options?

RQI lets us assess the effectiveness of CoLUA for classi-
fying CBRs across different classification techniques. We also
use ZeroR as a baseline approach [[17]]. RQ2 lets us investigate
whether a predictor trained from the labeled bug reports can
be used to predict new bug reports. RQ3 lets us evaluate
the effectiveness of CoLUA’s configuration option extraction
component.

A. Objects of Analysis

As objects of analysis we chose three large, mature, and
popular open-source software projects: Apache, MySQL, and
Mozilla. With millions of lines of publicly accessible code
and well maintained bug repositories, these subjects have been
widely used by existing bug characteristic studies [24], [47],
[48]. The selected programs and their versions are listed in
Columns 1-2 of Table [[I} The subject programs cover various
application spectrums - the world’s most used HTTP server,
the world’s most popular database engine, and a leading web
browser. All three projects started in the early 2000’s and each
has over ten years of bug reports.

To obtain training and testing data, we selected CBRs and
NCBRs from the bug tracking systems of the three projects.
In the Mozilla project, some bug reports had been labeled

! http://cs.uky.edu/~tyu/research/CoLUA

http://cs.uky.edu/~tyu/research/CoLUA

as CBRs, so we randomly selected 100 of them. However,
NCBRs were not labeled in Mozilla, and neither CBRs nor
NCBRs were labeled in the other two projects. In such
cases, we manually inspected all confirmed bug reports until
150 bug reports were selected for each of the CBR and
NCBR categories across all three projects. Since usually there
were more NCBRs than CBRs, we improved the process of
searching for CBRs by using a set of configuration-related
keywords (‘“configuration,” “option,” “preference,” “setting,”
etc.). Finally, we randomly picked 100 CBRs and 100 NCBRs
from the selected bug reports for each subject as a dataset for
that subject.

During the manual inspection, we read the reports with
sufficient details in the bug descriptions and examined the
discussions posted by commentators to decide if the inspected
bug was a CBR or not. To ensure the correctness of our
results, the manual inspections were performed independently
by three graduate students, each of whom has at least two
years of software development experience. Any time there was
dissension, the authors and the inspectors discussed to reach
a consensus. Note that keyword search alone is inadequate, as
we found that 67% of bug reports were false positives when
using the keyword search .

RQ2 requires new datasets to validate the learned classifiers.
We repeated the above manual process and selected 50 CBRs
and 50 NCBRs. While larger number of bug reports may yield
better evaluation, the cost of the manual process is quite high:
the understanding and preparation of the object used in the
study and the conduct of the study required between 400 and
600 hours of researcher time.

To answer RQ3, we also need to know the configuration
database for each subject. We collected this information by
studying all artifacts that are publicly available to users,
including documents (e.g., user manuals and on-line help
pages), configuration files, and source code. In Firefox, we also
utilized the APIs that have been provided to programmatically
manipulate internal data structures that hold configuration
information as well as studied the about :config page (a
utility for modifying configurations). This process yielded the
total number of configuration options for the three subjects
(Column 5 of Table [I).

9 <«

B. Variables and Measures

This section describes the independent variable and the
dependent variables.

1) Independent Variable: Our independent variable in-
volves the techniques used in our study. In CoLUA, we con-
sider three classification techniques: NaiveBayes and Decision
Tree, and Logistic Regression from Weka [18], We chose them
because they are popular and have been shown to be effective
at classifying bug reports [37]] as well as predicting software
defects in a recent study [16].

In addition to the three classification techniques, we use Ze-
roR as the baseline for comparison with our approach. During
training, ZeroR ignores the features and relies only on the la-
bels for predicting. Although it does not have much predicting

capability, it establishes the lowest possible predictability that
a classifier should have. It works by constructing a frequency
table for the labels in the training data and selects the most
frequent values of the testing data in predicting.

2) Dependent Variables: As dependent variables, we chose
metrics allowing us to answer each of our three research
questions.

Prediction performance: We used the F-measure to eval-
uate performance of CoLUA across the three classification
models and the baseline model ZeroR. The F-measure usually
represents the harmonic mean of precision and recall. The
computed F-measure values are between 0 and 1 and a larger
F-Measure value indicates a higher classification quality. The
following outcomes are used to define precision, recall, and F-
measure: (1) A CBR is correctly classified as a CBR (a — a);
(2) A CBR is incorrectly classified as a NCBR (¢ — b); and
(3) A NCBR is incorrectly classified as a CBR (b — a). We
use the above outcomes to evaluate the prediction accuracy of
our models with the following measures:

o Precision: the number of bug reports correctly classified
as CBRs (N,_,,) over the number of all bug reports
classified as CBRs.

PrecisionP(a) = +—e=ga

NaHu.JFNb*)a
¢ Recall: the number of bug reports correctly classified as
CBRs (IN,_,,) over the total number of CBRs.

RecallR(a) = m

o F-measure: a composite measure of precision P(b) and
recall R(b) for CBRs.

F — measureF(a) = 2+P(a)*R(a)

P(a)+R(a)

The F-measure for NCBRs can be calculated similarly. We
consider F-measures over 0.6 to be good [19].

To evaluate our prediction models and answer RQ1, we
used 10-fold cross validation, which has been widely used
to evaluate prediction models [26], [30]. Of these 10 folds,
9 folds are used to train a classification model while the
10" fold is used to evaluate the performance of the model.
The whole process is iterated 10 times, and the average
performance across the 10 iterations is recorded. Since 10-
fold cross validation randomly samples instances and puts
them in ten folds [3], we repeated this process 100 times and
calculated their average for each prediction model to avoid
sampling bias [26].

Statistical Tests: We report statistical measures when
applicable. For example, in RQ1 we assess whether predic-
tion performance of different classification techniques were
statistically significant. To do this, we applied the t-test to the
sets of F-measures, comparing each pair of two techniques.
We checked if the mean of F-measure values of technique A
was greater than the mean of F-measures of technique B at
the 95% confidence level (p — value < 0.05).

Ranking effectiveness: To evaluate how accurately
CoLUA extracts configuration options, for each subject we
ran the new sample of the 50 CBRs and evaluated whether the
correct answer (ground truth) was found and at which rank (for

effectiveness). This ranking strategy has been widely adopted
by existing fault localization techniques [[11f], [25].

For Mozilla, the configuration bug reports were already
labeled, so we use that information as ground truth to test
the accuracy of ranking. For bug reports from the other
two projects, the association of a bug report with one or
more configuration options was manually identified using the
process described in Section

C. Study Operation

We used NLTK to generate the term-by-document frequency
matrix from all the terms in the bug reports and selected &
terms as features based on their Chi-Square scores. Among
the k£ terms, m% of them were unigrams and n% of them
were bigrams. By default, £ = 100, m = 80, and n = 20. In
Section we further investigate how varying these values
can affect the performance of CoLUA.

We applied the four classification techniques on each of
the three training sets to build prediction models. We then
applied the trained models to test data sets and calculated
their F-measures. In the second step, we ran the configuration
identification component on all CBRs in the test datasets.

D. Threats to Validity

The primary threat to external validity for this study involves
the representativeness of our subjects and bug reports. Other
subjects may exhibit different behaviors. Data recorded in
bug tracking systems and code version histories can have a
systematic bias relative to the full population of bug reports [9]
and can be incomplete or incorrect [4]. However, we do
reduce this threat to some extent by using several varieties
of well studied open source code subjects and bug sources for
our study. We also used two hundred bug reports from each
system. We cannot claim that our results can be generalized
to all systems of all domains though.

The primary threat to internal validity involves the use of
keyword search and manual inspection to identify the CBRs
and NCBRs. To minimize the risk of incorrect results given
by manual inspection, bugs were labeled as configuration bugs
independently by three people. The risk of not analyzing all
configuration bugs cannot be fully eliminated. However, com-
bining keyword search and manual inspection is an effective
technique to identify bugs of a specific type from a large
pool of generic bugs and has been used successfully in prior
studies [24], [31], [47].

The primary threat to construct validity involves the dataset
and metrics used in the study. To mitigate this threat, we
used bug reports from the bug tracking systems of the three
subjects which are publicly available and generally well under-
stood. We also used the well known, accepted, and validated
measures of recall, precision, and F-measure. We minimized
threats to conclusion validity by performing statistical analysis
of our results.

V. RESULTS AND ANALYSIS

Results for each research question are presented below.

TABLE III
RQ1: CLASSIFICATION RESULTS

Program | Classes ZeroR | NB LR DT
Mozilla Conf. 0.667 | 0.787 | 0.775 | 0.832
Non-config. || 0.0 0.811 | 0.719 | 0.782
Apache Conf. 0.667 | 0.889 | 0.574 | 0.940
P Non-config. || 0.0 0.891 | 0.623 | 0.782
Conf. 0.667 | 0.607 | 0.701 | 0.679
MYSQL - —Ron-config. [[0.0 [0.385 | 0.718 | 0.615
Average Conf. 0.667 | 0.761 | 0.683 | 0.817
€€ "Non-config. || 0.0 0.696 | 0.687 | 0.726

TABLE IV
RQ2: PREDICTING NEW BUG REPORTS

Program | Classes NB LR DT

Mozilla Conlf. 0.775 | 0.779 | 0.815

Non-config. || 0.811 | 0.719 | 0.782

Apache Conf. 0.891 | 0.609 | 0.922

P Non-config. || 0.891 | 0.623 | 0.782

Conf. 0.621 | 0.698 | 0.671

MySQL I —ron-config. [0.393 [0.723 | 0.634

A. RQI: Effectiveness of Prediction

We use the F-measure to evaluate prediction performance
for the four classification algorithms, as described in Sec-
tion

Table summarizes the mean of F-measures from 100
ten-fold cross validations for four classification techniques
computed for the CBRs and NCBRs across all three subjects.
As we can see from the table, ZeroR performed the worst. It
achieved F-measure of 0.667 for CBRs but F-measure of 0
for NCBRs in all three open source projects. In fact, each
of the other three techniques was statistically better than
Zero-R across all subjects. Specifically, the improvement for
individual techniques over Zero-R with averaged F-measures
ranged from 107.6% to 132.9%. The F-measure values across
the three techniques were greater than 0.6 in 16 out of
18 models. These results imply that CoLUA is effective at
predicting configuration bug reports.

Inspection of all three classifiers in all subjects suggests
that, for each technique, there exists at least one case that
outperformed the other two. For example, in Apache, Naive-
Bayes was the best, whereas in MySQL, Logistic Regression
did better than the other two techniques. This difference could
be related to the styles of the bug reports in the three subjects
and the diversity of terms in the bug reports (this difference is
discussed further in Section . In fact, there is no statistical
difference between the effectiveness of the three techniques.
This result indicates that it is always a good idea to include
all these classifiers in the preliminary work and identify one
or a few that are better for the specific data source.

B. RQ2: New Bug Reports Prediction

RQ2 investigates whether a classifier learned from the
labeled datasets can be used for predicting new bug reports.
For each subject, we applied classification models built from
the labeled data set (100 CBRs and 100 NCBRs) to its
unlabeled dataset (50 CBRs and 50 NCBRs). We then checked
the accuracy of the prediction by assessing the performance

35

@
.E 30

S 25

& 20

c

8 15

-

2 10

2

=

Z o0

1 2 3 4 5 6--10 >10
B Mozilla Apache MysQL

Fig. 3. Ranking distribution for Mozilla, Apache, and MySQL.
TABLE V
RANKING RESULTS FOR MOZILLA, APACHE, AND MYSQL CBRS

Program | # CBRs | Top-10 Rate | Rank Range
Mozilla 50 92% 1-92
Apache 50 88% 1-113
MySQL 50 74% 1-108

of each model. The prediction results are shown in Table
For the three classification techniques, the F-measure values
were greater than 0.6 for 17 of the 18 models, indicating that
the classifiers are effective. Only the BayesNet model learned
from MySQL had low prediction effectiveness (F-measure =
0.359). Overall, these results suggest that CoLUA is effective
at predicting configuration bug reports that exist in unseen
new bug reports.

C. RQ3: Effectiveness of Configuration Option Extraction

The effectiveness of extracting configuration options is
measured by the success rate. To compute success rate, we
examine the rank score for each ranked list of configuration
options. Specifically, for each CBR, if the correct configuration
option (i.e., ground truth) is ranked first (in the first position
of the ranked list), the rank is 1. If the ground truth is at the
10th position in the list, it is 10, etc. When there are multiple
configuration options specified as the ground truth, we only
consider the first one that CoLUA can find. For example, if
20 out of 50 are found in the top 5 of the ranked list, the
top-5 success rate is 40%. The data is shown in Table [V] In
this table, we see the number of CBRs, the success rate in
the top-10 range, and the range of the ranks where the answer
(i.e., configuration options) is returned. The average success
rate is 84.7%, i.e., 84.7% configuration options are ranked in
the top-10 among thousands of configuration options. These
results indicate that CoLUA is effective at extracting root cause
configuration options.

To investigate the ranking distribution of all results, data
is presented in Figure [3] and Table [V} In both the table and
the graph we break out our results, showing those in the 1st
position, 2nd position, ..., those found in position 5-10, and
those found beyond the top-10. As can be seen, 57.3% of the
CBRs that return correct results appear in the top 5 positions
of the returned list. We believe that using additional lexical
information may help to improve these results.

VI. DISCUSSION

We now explore additional observations relevant to our
study.

TABLE VI
RANKING DISTRIBUTION FOR MOZILLA, APACHE, AND MYSQL

Program | 1 | 2 [3|45 |6-10 | > 10
Mozilla | 7 | 10 | 9| 9 | 5 6 4
Apache 91 8 |56 |3 13 6
MySQL | 5| 7 |4 |45 12 13

0.9
0.8

0.7
0.6 ®

0.4
03
0.2
0.1

F-measure values
o
v

30 50 70 L] 110 130 150 170

Mozilla-CBR Mozilla-NCBR CBR-Apache

NCBR-Apache =+ CBR-MySQL NCBR-MysSQL

Fig. 4. Number of features varying from 30 to 190 with the ratio
of unigrams to bigrams 8:2.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

[}

F-measure values

1 2 3 4 5 6 7 8 9

Mozilla-CBR Mozilla-NCBR CBR-Apache

NCBR-Apache —+—CBR-MySQL NCBR-MySQL

Fig. 5. Ratio of unigrams to bigrams varying from 1:9 to 9:1.

A. Effectiveness of Feature Selection

Since we use information gain and bigram to select features
for training classifiers, we would like to investigate whether
the use of the two techniques improves the performance of
CoLUA. We use AW to denote the technique that uses all
unigrams (i.e., feature selection is not applied), UNG to
denote that Chi-Squaren on only unigrams is applied, and
BIG to denote that Chi-Square on bigrams is applied.

Table summarizes the F-measure values computed for
AW, UNG, and BIG across all three subjects for both CBRs
and NCBRs. Comparing UNG to AW, UNG statistically
outperformed AW in terms of F-measure values for all three
subjects, with average improvement of 17.3% for CBRs and
23.4% for NCBRs. However, the improvement of BIG over
AW varies across subjects and is not overall significant,
indicating that including bigrams can increase performance
somewhat sometimes, but is not as effective as informative
unigrams. We next examine the three techniques in individual
subjects.

In Mozilla, there is a significant performance improvement
from AW to UNG (40% for CBRs and 47% for NCBRs).
This is because using all unigrams to classify the bug reports
leads to non-critical words having undue importance and thus
lowers the accuracy. On the other hand, when using bigrams

TABLE VII
RESULTS OF FEATURE SELECTION

Program | Classes NaiveBayes Logistic Regression Decision Tree
AW UNG | BIG AW | UNG | BIG AW | UNG | BIG
Mozilla Conf. 0.515 | 0.801 | 0.787 || 0.598 | 0.704 | 0.775 || 0.769 | 0.706 | 0.832
Non-config. || 0.511 | 0.932 | 0.811 || 0.686 | 0.792 | 0.719 || 0.711 | 0.698 | 0.782
Apache Conf. 0.606 | 0.842 | 0.889 || 0.574 | 0.741 | 0.574 || 0.766 | 0.858 | 0.940
Non-config. || 0.592 | 0.877 | 0.891 0.523 | 0.851 | 0.623 || 0.702 | 0.779 | 0.782
MySQL Conf. 0.530 | 0.667 | 0.607 || 0.654 | 0.740 | 0.701 || 0.708 | 0.649 | 0.679
Non-config. || 0.535 | 0.609 | 0.385 || 0.674 | 0.625 | 0.718 || 0.621 | 0.562 | 0.615
Average Conf. 0.550 | 0.770 | 0.761 0.608 | 0.728 | 0.683 || 0.748 | 0.738 | 0.817
Non-config. || 0.546 | 0.803 | 0.696 || 0.628 | 0.756 | 0.687 || 0.678 | 0.680 | 0.726

as features (BIG), the performance improvement over AW
is not as high as when using high information unigrams only
(38.3% for CBRs and 15% for NCBRs).

In Apache, we also see performance improvement over AW
when using UNG (19.7% for CBRs and 20.3% for NCBRs).
However, the improvement is not as high as for Mozilla. This
is due to the different styles of bug reports in Mozilla and
MySQL. The terms used to describe bugs in Mozilla vary
greatly from report to report; that is not the case in MySQL.

In MySQL, UNG did not perform better than AW. One
possible reason is that there is too much extraneous informa-
tion in these bug reports, such as the execution error results.
While these execution error results can assist a developer with
debugging, they contain many repetitive terms that detract
from accurately identifying the bug report type. They become
high information words to the classifier due to their frequency.
To address this problem, we could extract frequently occurring
terms and check if they are “noise” terms (i.e., error results in
this case) and exclude those counts. As part of future work,
we will leverage the work in [43] to eliminate noise terms.

The other likely reason that U NG did not outperform AW
is that the high information terms do not occur predominantly
in just one class (configuration OR non-configuration). For
example, the words “set” and “value” appear in the first 100
high information words produced by Chi-Square. They are
not used by the classifiers as key features for identifying
configuration bug reports though (or are so far down the list
of features that they are not used). These two words make it
into the 100 high information words because they are frequent
in some reports, making their occurrence count high. It is
possible to address this in the future as was mentioned above;
basically identifying additional stopwords or “noise” words by
using prior work [43].

From this, we gained a number of insights. First, we
learned that using informative unigrams plus bigrams generally
increases performance compared to informative words alone,
but not by much. In the case of the Apache subject using
NaiveBayes, the performance is not increased as much. By
balancing performance gain and required processing, we can
choose to use UNG and BIG or can use UNG in isolation.
Second, it is clear that bug reports may contain extraneous
information and need to be “cleaned” or “condensed” to their
essence. For future work, it is possible that prior work by
Murphy et al. [37] can be used to distill bug reports to their

essential terms. Third, it may be necessary to increase the
number of bug reports in the training set in order to ensure
that they are representative of real world occurrences and ratios
of CBRs and NCBRs.

B. Numbers of Features

By default, CoLUA used the top 100 features in terms
of their information gain scores, with the default ratio of
unigrams to bigrams of 8:2. To further investigate whether
using different numbers of selected features affect CoLUA’s
performance, we vary the number of selected features in the
range [30, 50, 70, 90, 110, 130, 150, 170, 190]. We used the
Decision Tree classifier because it achieved the best average
performance among all three classifiers. Figure [plots the
F-measure values computed for CBRs and NCBRs in all
three subjects across different numbers of features. The results
show that while the optimum number of features varies across
different subjects, when we select more than 110 features, the
performance of CoLUA is stable.

C. Ratios of Unigrams to Bigrams

We next investigate how varying the ratio of unigrams to
bigrams in the selected 100 features can affect the performance
of CoLUA. Again, we used the Decision Tree classifier.
Figure [5] plots the F-measure values computed for CBRs
and NCBRs in all three subjects across different portions of
unigrams (1-9). As the figure shows, the performance does not
make much difference for different ratios. The only exception
occurred for Apache, where 7:3 is the optimum ratio.

D. Best Features

In addition to generating a model that can identify con-
figuration bug reports, we are also interested in finding dis-
criminative features that could help in distinguishing CBRs
and NCBRs. The top 10 features are displayed in Table
sorted by their information gain scores.

As the table shows, when the information gain score is
high, it has more power to discriminate CBRs from NCBRs.
For example, the keyword “Configuration” has been used by
existing work [5] to identify configuration bug reports; it
appears in the top 10 most discriminative features.

In contrast to our finding on the usefulness of high infor-
mation gain score, not all important terms occur in the list.
In NLTK, once a word is selected as a feature, it is treated

TABLE VIIL
THE SUBSET OF THE MOST INFORMATIVE WORDS FOR MOZILLA,
APACHE, AND MYSQL BUG REPORTS THAT ARE USED BY CLASSIFIERS

Mozilla Apache MySQL
word score || word score || word score
crash 8375.5 || Configuration | 542.4 || option 253.4
build 1675.2 || module 200.3 || global 212.7
talkback 736.3 || conf 196.4 || configuration | 208.1
reproducible | 676.0 || directive 175.8 || cnf 171.2
identifier 553.7 || enable 170.2 || usr 136.2
option 442.9 || src 112.3 || ref 93.4
agent 376.5 || xindice 99.0 || connector 81.9
preference 357.3 || ssl 95.0 || socket 80.0
code 272.8 || configure 45.8 || sock 68.2

equally with other features, regardless of how often it appears
in reports. It is up to the classifier to decide which of the
selected features are important for determining if a bug report
is configuration-related or not. For example, though they have
high information gain scores, in the training bug reports the
words “set” and “value” do not appear enough in bug reports to
merit being treated as important features, so they do not appear
at all in Table On the other hand, even though the word
“preference” is not high on the list of information gain scores
for Mozilla, it becomes high on the list of features selected by
classifiers as shown in Table [VIII] This is because “preference”
appears in the majority of configuration bug reports. Thus,
even though there are not many words that we consider as
being very informative for Mozilla in Table the result
for Mozilla is good.

VII. RELATED WORK

There has been a great deal of work on configuration-
aware techniques [7]], [36], [47], [49]]. For example, Yin et
al. [47] study a number of configuration bugs to understand the
configuration errors in commercial and open source systems.
Rabkin et al. [|36]] propose a static analysis technique to extract
configuration options from Java code. There has been a large
body of work in the testing community that demonstrates the
need for configuration-aware testing techniques and proposes
methods to sample and prioritize the configuration space [35]],
[46]. Zhang et al. [49] propose a technique to diagnose
crashing and non-crashing errors related to software miscon-
figurations. However, none of this work considers classifying
configuration bug reports or extracting configurations from the
bug reports. Our work is orthogonal to the above work though.

There has been some research on mining bug repositories to
classify and predict specific fault types. For example, Padberg
et al. [[14]] leverage statistical and machine learning techniques
to label bug reports related to concurrency bugs. Gegick
et al. [15] classify bug reports as either security- or non-
security-related. However, these techniques neither classify
configuration bug reports nor identify concrete bug sources.
Xia et al. [44] use text mining to categorize configuration bug
reports related to system settings and compatibilities, but their
technique does not target configuration bugs due to misuse
of configuration options. In contrast, CoLUA first predicts

whether a configuration bug report is related to the incorrect
settings of configuration options and then extracts concrete
configuration options.

There has been considerable work on using natural language
and information retrieval techniques to improve code docu-
mentation and understanding [[13]], [21]], [22] and to create
code traceability links [2], [[12], [28], [33]. While our work
applies some of these same basic techniques, such as tokeniza-
tion, lemmatization, vector space model with term frequency-
inverse document frequency weighting [8]], the prior art has
not applied these techniques to configuration bug reports and
has not considered or extracted configuration options. Machine
learning has been used recently to identify traceability links
and to categorize or classify requirements [[10], [20]]. Weka and
other machine learning frameworks have been leveraged for
this work, just as with our work. In contrast, our work studies
the application of such classifiers to configuration bug reports.
Also, there is no prior art utilizing machine learning, natural
language processing, and IR to discover the configuration
options related to a predicted configuration bug report, to our
knowledge. CoLUA is unique in that it works on the bug
reports without access to other artifacts. The return result is
the configuration options that are used within the configuration
database.

Li et al. [27] collect security bug reports from Mozilla and
Apache and use a natural language model to identify the root
causes of the security bugs. The results provide guidance on
what types of tools and techniques security engineers should
use to address security bugs. Podgurski et al. [34] use a
clustering approach for classifying bug reports to prioritize and
identify the root causes of bugs. Their techniques, however, do
not deal with configuration bug reports.

VIII. CONCLUSION

In this paper, we presented CoLUA, an automated ap-
proach for classifying configuration bug reports and extracting
configuration options. CoLUA involves two steps. The first
step trains classification models on the labeled bug reports
to predict a given unlabeled bug report as being either a
configuration or non-configuration bug report. The second
step employs natural language processing and information
retrieval to extract configuration options from the identified
configuration bug reports. We applied CoLUA on 900 bug
reports from three open source projects. The results show
that CoLUA discriminates configuration bug reports from non-
configuration bug reports with high accuracy and that it is
effective at extracting configuration options. In the future,
we will improve the performance of CoLUA by leveraging
techniques to eliminate noise terms. In addition, we will
perform more extensive experiments.

IX. ACKNOWLEDGMENTS

This work was supported in part by NSF grants CCF-
1464032, and CCF-1511117.

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

Getting Started With SAS 9.1 Text Miner. SAS Institute, Incorporated,
2004.

N. Ali, W. Wu, G. Antoniol, M. Di Penta, Y. G. Guhneuc, and J. H.
Hayes. Moms: Multi-objective miniaturization of software. In
International Conference on Software Maintenance, pages 153-162,
2011.

Ethem Alpaydin. Introduction to Machine Learning. The MIT Press,
2004.

Jorge Aranda and Gina Venolia. The secret life of bugs: Going past
the errors and omissions in software repositories. In International
Conference on Software Engineering, pages 298-308, 2009.

F. A. Arshad, R. J. Krause, and S. Bagchi. Characterizing
configuration problems in java ee application servers: An empirical
study with glassfish and jboss. In International Symposium on
Software Reliability Engineering, pages 198-207, 2013.

B Ashok, Joseph Joy, Hongkang Liang, Sriram K Rajamani, Gopal
Srinivasa, and Vipindeep Vangala. Debugadvisor: a recommender
system for debugging. In Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages
373-382, 2009.

Mona Attariyan, MIchael Chow, and Jason Flinn. X-ray: Automating
root-cause diagnosis of performance anomalies in production software.
In USENIX Symposium on Operating Systems Design and
Implementation, pages 307-320, 2012.

Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham
Bernstein, Vladimir Filkov, and Premkumar Devanbu. Fair and
balanced?: Bias in bug-fix datasets. pages 121-130, 2009.

Jane Cleland-Huang, Adam Czauderna, Marek Gibiec, and John
Emenecker. A machine learning approach for tracing regulatory codes
to product specific requirements. In International Conference on
Software Engineering - Volume 1, pages 155-164, 2010.

Holger Cleve and Andreas Zeller. Locating causes of program failures.
In International Conference on Software Engineering, pages 342-351,
2005.

Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, and Giuliano
Antoniol. Can better identifier splitting techniques help feature
location? In International Conference on Program Comprehension,
pages 11-20, 2011.

Eric Enslen, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Mining
source code to automatically split identifiers for software analysis. In
International Working Conference on Mining Software Repositories,
pages 71-80, 2009.

M. Blersch F. Padberg, P. Pfaffe. On mining concurrency
defect-related reports from bug repositories. In International Workshop
on Mining Unstructured Data, 10 2013.

M. Gegick, P. Rotella, and T. Xie. Identifying security bug reports via
text mining: An industrial case study. In InternationalWorking
Conference on Mining Software Repositories, pages 11-20, 2010.
Baljinder Ghotra, Shane McIntosh, and Ahmed E. Hassan. Revisiting
the impact of classification techniques on the performance of defect
prediction models. In International Conference on Software
Engineering, pages 789-800, 2015.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The weka data mining software: An
update. ACM SIGKDD Explorations Newsletter, 11(1):10-18,
November 2009.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The weka data mining software: An
update. Special Interest Group on Knowledge Discovery and Data
Mining Explorations Newsletter, 11(1):10-18, November 2009.

Jane Huffman Hayes, Alex Dekhtyar, and Senthil Karthikeyan
Sundaram. Advancing candidate link generation for requirements
tracing: The study of methods. IEEE Transactions on Software
Engineering, 32(1):4-19, 2006.

Jane Huffman Hayes, Wenbin Li, and Mona Rahimi. Weka meets
tracelab: Toward convenient classification: Machine learning for
requirements engineering problems: A position paper. In International
Workshop on Artificial Intelligence for Requirements Engineering,
pages 9-12, 2014.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

Emily Hill, Zachary P. Fry, Haley Boyd, Giriprasad Sridhara, Yana
Novikova, Lori Pollock, and K. Vijay-Shanker. Amap: Automatically
mining abbreviation expansions in programs to enhance software
maintenance tools. In International Working Conference on Mining
Software Repositories, pages 79-88, 2008.

Matthew J. Howard, Samir Gupta, Lori Pollock, and K. Vijay-Shanker.
Automatically mining software-based, semantically-similar words from
comment-code mappings. In International Working Conference on
Mining Software Repositories, pages 377-386, 2013.

Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson.
Configurations everywhere: Implications for testing and debugging in
practice. In International Conference on Software Engineering (ICSE
Companion), pages 215-224, 2014.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs. In
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 77-88, 2012.

James A. Jones and Mary Jean Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In International
Conference on Automated Software Engineering, pages 273-282, 2005.
Taek Lee, Jaechang Nam, DongGyun Han, Sunghun Kim, and

Hoh Peter In. Micro interaction metrics for defect prediction. In
Proceedings of the ACM SIGSOFT Symposium and the European
Conference on Foundations of Software Engineering, pages 311-321,
2011.

Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. Have things changed now?: An empirical study of
bug characteristics in modern open source software. In Proceedings of
the 1st Workshop on Architectural and System Support for Improving
Software Dependability, pages 25-33, 2006.

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa
Tortora. Recovering traceability links in software artifact management
systems using information retrieval methods. ACM Transactions on
Software Engineering and Methodology, 16(4), September 2007.
Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze.
Introduction to Information Retrieval. Cambridge University Press,
New York, NY, USA, 2008.

R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction. In ACM/IEEE International Conference on Software
Engineering., pages 181-190, 2008.

Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and
fixing performance bugs. In International Working Conference on
Mining Software Repositories, pages 237-246, 2013.

Frank Padberg, Philip Pfaffe, and Martin Blersch. On mining
concurrency defect-related reports from bug repositories.

Annibale Panichella, Collin McMillan, Evan Moritz, Davide Palmieri,
Rocco Oliveto, Denys Poshyvanyk, and Andrea De Lucia. When and
how using structural information to improve ir-based traceability
recovery. In European Conference on Software Maintenance and
Reengineering, pages 199-208, 2013.

Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda
Minch, Jiayang Sun, and Bin Wang. Automated support for classifying
software failure reports. In International Conference on Software
Engineering, pages 465475, 2003.

Xiao Qu, Myra B. Cohen, and Gregg Rothermel. Configuration-aware
regression testing: An empirical study of sampling and prioritization.
In International Symposium on Software Testing and Analysis, pages
75-86, 2008.

Ariel Rabkin and Randy Katz. Static extraction of program
configuration options. In International Conference on Software
Engineering, pages 131-140, 2011.

S. Rastkar, G. C. Murphy, and G. Murray. Automatic summarization
of bug reports. IEEE Transactions on Software Engineering,
40(4):366-380, 2014.

Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM Computer Survey, 34(1):1-47, 2002.

Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards
more accurate retrieval of duplicate bug reports. In Proceedings of the
IEEE/ACM International Conference on Automated Software
Engineering, pages 253-262, 2011.

Sandeep Tata and Jignesh M Patel. Estimating the selectivity of tf-idf
based cosine similarity predicates. ACM Sigmod Record, 36(2):7-12.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

Qiangian Wang, Chris Parnin, and Alessandro Orso. Evaluating the
usefulness of ir-based fault localization techniques. In Proceedings of
the International Symposium on Software Testing and Analysis, pages
1-11, 2015.

K. Wiklund, D. Sundmark, S. Eldh, and K. Lundvist. Impediments for
automated testing — an empirical analysis of a user support discussion
board. In International Conference on Software Testing, Verification
and Validation, pages 113-122, 2014.

Hans Friedrich Witschel. Estimation of global term weights for
distributed and ubiquitous ir. In The Workshop on Ubiquitous
Knowledge Discovery for Users, 2006.

X. Xia, D. Lo, W. Qiu, X. Wang, and B. Zhou. Automated
configuration bug report prediction using text mining. In Computer
Software and Applications Conference, pages 107-116, 2014.

Yiming Yang and Jan O. Pedersen. A comparative study on feature
selection in text categorization. In International Conference on
Machine Learning, pages 412-420, 1997.

Cemal Yilmaz, Myra B. Cohen, and Adam Porter. Covering arrays for
efficient fault characterization in complex configuration spaces. IEEE
Transactions on Software Engineering, 29(4), July 2004.

Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy. An empirical study on
configuration errors in commercial and open source systems. In ACM
symposium on Operating Systems Principles, pages 159-172, 2011.
Shahed Zaman, Bram Adams, and Ahmed E. Hassan. A qualitative
study on performance bugs. In International Working Conference on
Mining Software Repositories, pages 199-208, 2012.

Sai Zhang and Michael D. Ernst. Automated diagnosis of software
configuration errors. In International Conference on Software
Engineering, pages 312-321, 2013.

Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. Combining
text mining and data mining for bug report classification. In
International Conference on Software Maintenance and Evolution,
pages 311-320, 2014.

	Introduction
	Motivation
	Approach
	Feature Selection
	Basic Text Parsing
	Feature Selection Using Chi-Square

	Ranking
	Machine Learning
	Extracting Configuration Options
	Splitting Configuration Options
	Matching and Ranking

	Implementation

	Empirical Study
	Objects of Analysis
	Variables and Measures
	Independent Variable
	Dependent Variables

	Study Operation
	Threats to Validity

	Results and Analysis
	RQ1: Effectiveness of Prediction
	RQ2: New Bug Reports Prediction
	RQ3: Effectiveness of Configuration Option Extraction

	Discussion
	Effectiveness of Feature Selection
	Numbers of Features
	Ratios of Unigrams to Bigrams
	Best Features

	Related Work
	Conclusion
	Acknowledgments
	References

