
Increased Software Reliability Through Input Validation

Analysis and Testing �

Jane Hu�man Hayes A. Je�erson O�utt

Innovative Software Technologies Information and Software Engineering

Science Applications Intl. Corp. George Mason University

jane.e.hayes@cpmx.saic.com ofut@gmu.edu

Jane Huffman Hayes and A. Jefferson Offutt.

Increased Software Reliability Through

Input Validation Analysis and Testing. The Tenth

IEEE International Symposium on Software Reliability En-

gineering (ISSRE '99), pages 199--209, Boca Raton,

FL, November 1999.

Abstract

The Input Validation Testing (IVT) technique has
been developed to address the problem of statically an-
alyzing input command syntax as de�ned in English
textual interface and requirements speci�cations and
then generating test cases for input validation testing.
The technique does not require design or code, so it
can be applied early in the lifecycle. A proof-of-concept
tool has been implemented and validation has been
performed. Empirical validation on industrial soft-
ware shows that the IVT method found more require-
ment speci�cation defects than senior testers, gener-
ated test cases with higher syntactic coverage than se-
nior testers, and found defects that were not found by
the test cases of senior testers. Additionally, the tool
performed at a much-reduced cost.

1 Introduction

Many computer programs interact with users
through various sorts of commands and many soft-
ware faults are a result of mishandling commands.
To be considered reliable, software must process valid
commands correctly and respond to invalid commands
with reasonable tolerance. Commands may be in
many forms, including mouse clicks, screen touches,

�This work is supported in part by the Command and Con-
trol Systems Program (PMA-281) of the Program Executive
O�cer Cruise Missiles Project and Joint Unmanned Aerial Ve-
hicles (PEO(CU)), U.S. Navy and by the U.S. National Science
Foundation under grant CCR-98-04111. Special thanks to Ms.
Theresa Erickson.

pen touches, voice, and �les. Programs that accept
free-form input, interactive input from users, and free-
form numbers are all examples of syntax driven ap-
plications [7]. In this paper, a syntax driven applica-
tion accepts inputs from the users, constructed and ar-
ranged properly, that direct the processing of the soft-
ware application. Some GUI-based systems and most
mode-based reactive systems such as tra�c signal con-
trollers are not syntax driven. Also, some system can
be mixed, with parts of the their interfaces being syn-
tax driven, and some not. This paper presents a new
technique for testing syntax driven applications. The
technique has been automated and validated, and can
be applied to a variety of software applications.

There is a large amount of software that depends on
user input via keyboard entry, largely undocumented
[10], that will need to be maintained for many years to
come. According to a survey performed by the U.S. In-
stitute for Defense Analyses (IDA), a good deal of �rst
and second generation language software still exists
[6]. Transaction control languages, communications
protocols, and user/operator commands (e.g., SQL)
are all examples of applications that could bene�t from
input validation (syntax) testing [2]. Beizer presents
one fault taxonomy that suggests that about 8.1% of
faults come from problems in the requirements. As
voice-controlled software becomes more widespread,
the problem of testing syntax driven applications will
become applicable to a much broader set of applica-
tions.

A user command is a user input that directs the
control ow of a computer program. A user command
language has a complete, �nite set of commands that
are entered textually through the keyboard. Syntax
driven software has a command language interface.
Syntax driven applications must be able to properly
handle user commands that are not constructed and
arranged as expected, and must be able to properly
handle user commands that are constructed and ar-

1



ranged as expected.
The �rst requirement refers to the need for soft-

ware to be tolerant of operator errors. That is, soft-
ware should anticipate most classes of input errors and
handle them gracefully. Test cases should be devel-
oped to ensure that a syntax driven application ful�lls
both requirements. Input-tolerance is de�ned as an
application's ability to properly process both expected
and unexpected input values. Input validation testing,
then, is de�ned as choosing test data that attempt to
show the presence or absence of speci�c faults pertain-
ing to input-tolerance.

1.1 System Testing

Though much research has been done in the area
of unit testing, system testing has not garnered as
much attention from researchers. This is partly due
to the expansive nature of system testing: many unit
level testing techniques cannot be practically applied
to millions of lines of code. There are many well de-
�ned testing criterion for unit testing [2, 21] but not
for system testing. Lack of formal research results in a
lack of formal, standard criteria, general purpose tech-
niques, and tools.

Much of the system-level research undertaken to
date has largely concentrated on testing for perfor-
mance, security, accountability, con�guration sensitiv-
ity, start-up, and recovery [2]. These techniques re-
quire that source code already exist. Such dynamic
techniques are referred to as detective techniques since
they are only able to identify already existing defects.
Techniques that can be applied early in the life cycle
are more desirable. Preventive techniques help avert
the introduction of defects into the software and allow
early identi�cation of defects when it is less costly and
time consuming to repair them.

1.2 Input Validation

Input validation refers to those functions in soft-
ware that attempt to validate the syntax of user-
provided commands/information. It is desirable to
have a systematic way to prepare test cases for this
software early in the life cycle. By doing this, user in-
put commands can be analyzed for completeness and
consistency. It is preferable that user commands be
documented in Software Requirement Speci�cations
(SRS), Interface Requirements Speci�cations (IRS),
Software Design Documents (SDD), and Interface De-
sign Documents (IDD). The test cases can be used by
the developers to guide them toward writing more ro-
bust, error-tolerant software. Currently, no well devel-
oped or formalized technique exists for automatically

analyzing the syntax and semantics of user commands
(if such information is even provided by the developers
in requirements or design documents) or for generating
test cases for input validation testing. The technique
proposed here is preventive in that it will statically
analyze the syntax of the user commands early in the
life cycle. It is also detective since it generates test
cases that can be run on the code.

The goal of this research is to improve the qual-
ity of natural language, textual interface requirements
speci�cations and the resulting software. This is done
by formalizing the analysis and testing of interface
requirements speci�cations without forcing testers to
learn a new speci�cation language and without in-
creasing the cost of testing. This paper presents a new
method for analyzing and testing syntax-directed soft-
ware that generates test cases from syntactic anoma-
lies in speci�cations. A proof-of-concept system was
constructed and validated. We empirically established
large improvements over current practice in the num-
ber of anomalies statically detected in speci�cations,
the time needed for testing, and the number of speci-
�cation defects and software faults found.

2 Background

A goal of system testing is to detect faults that
can only be exposed by testing the entire integrated
system or some major part of it [2]. The research in
this paper is related transaction-ow testing [2] and
speci�cation-based interface checking. A transaction
is a unit of work from a user's point of view (e.g., val-
idating a user's ATM card, validating a user's ATM
password, updating a user's account balance, etc.). A
transaction owgraph (TFG) combines transactions to
represent processing steps for one complete type of
transaction. Conditional and unconditional branches
can be used. Once the owgraph has been built and
analyzed (using standard inspection and walkthrough
techniques), test cases are generated. Our approach
improves upon transaction-ow testing by adding for-
mality, repeatability, and precision.

2.1 Speci�cation-Based Interface Check-
ing

Large, complex systems are often designed by de-
composing them into smaller segments and compo-
nents that communicate with each other. Two stan-
dards by the U.S. Department of Defense (DoD), DoD-
STD-2167A [16] and MIL-STD-498 [17], make it clear
that mission critical DoD systems follow this model.
As a result, a system will be composed of interfaces



with users as well as many interfaces between compo-
nents. Parnas points out that there are di�cult prob-
lems of interface design and interface enforcement [18].
Liu and Prywes describe a speci�cation approach that
uses a dataow speci�cation, interface speci�cations
de�ned using regular expressions, and a module spec-
i�cation to statically analyze the speci�cations, auto-
matically generate system level and procedural pro-
grams from the speci�cations, and compose and check
speci�cations of connected components [13]. The IVT
method also performs consistency checking of interface
speci�cations, but does not require users to compose
speci�cations using regular expressions or �le de�ni-
tions. It uses \informal" interface speci�cations found
in an Interface Requirements Speci�cation document.

2.2 Previous Work in Input Validation
Testing

To date, the work performed in the area of input
validation testing has largely focused on automatically
generating programs to test compilers. Techniques
have not been developed or automated to assist in
static input syntax evaluation and test case genera-
tion. Thus there is a lack of formal, standard criteria,
general purpose techniques, and tools. Previous re-
search [1, 3, 5, 8, 12, 15, 19] test speci�c systems, are
code-based for speci�c languages, or require extensive
training by testers. The IVT approach does not re-
quire source code or formal speci�cations, and requires
minimal input from users. It also entirely automates
the production of tests and of static analysis.

More recently, Beizer [2] provides a practical discus-
sion on input validation testing (called syntax testing).
He proposes that the test engineer prepare a graph to
describe each user command, and then generate test
cases to cover this graph using coverage techniques
such as all-edges. Marick [14] also presents a prac-
tical approach to syntax testing, suggesting a num-
ber of informal guidelines. A domain-based testing
tool called Sleuth [20] assists in test case generation
for command-based systems (CBS). CBS di�er from
syntax-driven applications in that CBS are based on
a command language user interface whereas syntax-
driven applications are broader and may include data
�les, textual entries in a form, and/or a command lan-
guage.

3 The Input Validation Test Method

Input validation testing (IVT) focuses on the spec-
i�ed behavior of the system and uses a graph of the
syntax of user commands. IVT incorporates formal

rules in a test criterion that includes a measurement
and stopping rule. Several grammar analysis tech-
niques have been applied as part of the static anal-
ysis of the input speci�cation. This section discusses
the four major aspects of the IVT method: (1) how
to specify the format of speci�cations, (2) how to ana-
lyze a user command speci�cation, (3) how to generate
valid test cases for a speci�cation, and (4) and how to
generate error test cases for a speci�cation.

IVT uses a test obligation database, a test case ta-
ble, and a Microsoft Word �le. A test obligation is a
defect or potential software problem that is detected
during static analysis. If a defect is found (such as an
overloaded token value), information on the speci�ca-
tion table, the data element, and the defect is stored in
the test obligation database. Each record represents
an obligation to generate a test case to ensure that
the static defect has not become a fault in the �nished
software. A test case is generated for each test obli-
gation. The test case table is used to record all the
test cases that are generated. The Microsoft Word �le
is used to generate test plans and cases in a standard
Test Plan format.

3.1 Specifying speci�cation format

The IVT method is speci�cation driven, thus is only
useful for systems whose interfaces have been well doc-
umented. The IVT method expects a minimum of
one data element per user command language speci�-
cation table (referred to as \Type 1" tables) and ex-
pects a minimum of three �elds for the data element:
(1) data element name, (2) data element size, and (3)
expected/allowable values.

3.2 Analyzing user command speci�ca-
tions

A user command language speci�cation de�nes the
requirements that allow users to interact with the sys-
tem to be developed. The integrity of a software sys-
tem is directly tied to the integrity of the system inter-
faces, both internally and externally [11]. There are
three well accepted software quality criteria that ap-
ply to interface requirements speci�cations: complete-
ness, consistency, and correctness [4]. Unfortunately,
there have been no studies to determine what percent
of problems can be attributed to each criterion. This
research only addresses the �rst two.

Requirements are complete if and only if everything
that eventual users need is speci�ed [4]. The IVT
method assesses the completeness of a user command
language speci�cation in two ways. First, the IVT



method checks that there are data values present for
every column and row of the speci�cation table. Sec-
ond, the IVT method performs static analysis of the
speci�cation tables. The IVT method looks to see if
there are hierarchical, recursive, or grammar produc-
tion relationships between the table elements. For hi-
erarchical and grammar production relationships, the
IVT method checks to ensure that there are no miss-
ing hierarchical levels or intermediate productions. If
such defects are detected with the speci�cation table,
a test obligation will be generated and stored in the
test obligation database. Any recursive relationships
detected will be agged by IVT as confusing to the
end users and having the potential to cause the end
users to input erroneous data. If recursive relation-
ships are detected with the speci�cation table, a test
obligation will be generated and stored in the test obli-
gation database.

Consistency is exhibited \if and only if no subset of
individual requirements conict" [4]. Internal incon-
sistency refers to conicts between requirements in the
same document. External inconsistency refers to con-
icts between requirements in related interface docu-
ments. In addition to analyzing user command lan-
guage speci�cation tables, the IVT method also ana-
lyzes input/output (or data ow) tables. These tables
(referred to as \Type 3" tables1) are found in inter-
face requirements speci�cations and interface design
documents and are often associated with data ow di-
agrams. These tables are expected to contain three
�elds: (1) data element, (2) data element source, and
(3) data element destination.

Completeness and consistency are automatically
checked by the IVT method. When problems are
found, they are used to generate error reports when
the requirements are obviously wrong, and test obliga-
tions when the requirements have potential problems.
Detailed algorithms for these checks are provided in
the technical report [9].

Davis de�nes correctness for requirements as exist-
ing \if and only if every requirement stated represents
something that is required" [4]. Although this sounds
circular, the intent is that every statement in a set of
requirements says something that is necessary to the
functionality of the system. The IVT method does not
address correctness of requirements.

The IVT method performs the following three ad-
ditional checks on Type 1 tables (user command lan-
guage speci�cation tables containing syntactic infor-
mation):

1. Examine data elements that are adjacent to each

1Although a \space" was left for Type 2 tables, it turned out
that none were actually found in any requirements examined.

other. If no delimiters are speci�ed, the IVT
method will look to see if two data elements of
the same type or with the same expected value
are adjacent. If so, a test obligation is generated
to ensure that the two elements are not concate-
nated if a user \overtypes" one element and runs
into the next element. The algorithm is shown in
Figure 1. It looks at each record in the table of
test objects and writes appropriate test cases to
the test case table.

2. Check to see if a data element appears as the data
type of another data element. If IVT detects such
a case, it informs the user that the table elements
are ambiguous and a test obligation is generated.

3. Check to see if the expected value is duplicated
for di�erent data elements. This is a potential
poor interface design because users might type
the wrong value. This situation is similar to when
a grammar has overloaded token values. If IVT
detects such a case, it informs the user that the ta-
ble elements are potentially ambiguous and a test
obligation is generated. The algorithm is shown
in Figure 2. It looks at each pair of elements in the
table of token elements, and if they are the same,
writes appropriate test cases to the test case ta-
ble.

algorithm: OverloadedTokenValue (CurTab)
input: A table that contains token elements.

output: Test obligations.
declare: Element -- Record of tokens: (element num,

element name, position,
class of values, size, class, value num, value)
i, j, c -- integer

v -- value
A -- array of values

OverloadedTokenValue (CurTab)
BEGIN -- Algorithm OverloadedTokenValue

READ in CurTab
c = 1
FOREACH Element in CurTab DO

v = GetValue (Element)
A [c] = v
c = c + 1

END FOREACH

FOR i = 1 TO Size (A)-1 DO
FOR j = i+1 TO Size (A) DO

IF (A[i] == A[j]) THEN
Write error message and record

to test oblication database
ENDIF

ENDFOR
ENDFOR

END Algorithm OverloadedTokenValue

Figure 2: The OverloadedTokenValueAlgorithm



algorithm: CatenateStaticError (CurTab)
input: A table of test object records.
output: Test cases for catenation.
declare: CurRec -- Record being processed.

CurTab -- Table being processed.
TestObRecord -- Record of test objects (ErrorCord, AmbCharNum, AmbigValue, CharNum).
TestObTab -- Table of TestObRecord.

CatenateStaticError (CurTab)
BEGIN -- Algorithm CatenateStaticError

FOREACH TestObRec IN TestObTab DO
load current test case for CurRec corresponding to TestObRec

IF (TestObRec.ErrorCode == 1) THEN
current test case (TestObRec.AmbCharNum) = TestObRec.AmbigValue
current test case (TestObRec.CharNum) = TestObRec.AmbigValue
write new test cases and "Valid/Overloaded Token Static Error" to test case table

ELSE IF (TestObRec.ErrorCode == 2) THEN
tempvalue = current test case (TestObRec.CharNum)
current test case (TestObRec.AmbigCharNum) = tempvalue
write new test case and "Invalid/Catenation Static Error" to test case table

ENDIF
write test case to test case table

END FOREACH
END Algorithm CatenateStaticError

Figure 1: The CatenateStaticError Algorithm

3.3 Generating valid test cases

The user command language speci�cation is used
to generate a covering set of test cases. The syntax
graph of the command language is tested by adapting
the all-edges testing criterion [21]. Each data element
is represented as a node in the syntax graph. Many
user command speci�cations yield loops in the syntax
graphs, and the following heuristic is used [2, 14]: exe-
cute 0 times through the loop, execute 1 time through
the loop, execute N times through the loop, and exe-
cute N+1 times through the loop, where N is a reason-
ably large number. If the loops is determinant (i.e., a
for loop), then N can be determined from the max-
imum number of iterations, if not, then a reasonably
large number can be chosen. (The current tool uses
10 as a default, but that can be easily changed.) The
test cases are generated automatically by traversing
the syntax graph. Figure 3 shows the CoverTest-
Cases algorithm. It walks through each of the previ-
ously generated tables and generates actual values for
the test cases.

3.4 Generating error test cases

There are two sources of rules for generating erro-
neous test cases: the error condition rule base, and
the test obligation database. The error condition rule
base is based on the Beizer [2] and Marick [14] lists
of practical error cases. Unfortunately, space does not
allow these tables to be included in this paper. The
test obligation database is built during static analysis.

Erroneous test cases are generated from both the error
condition rule base and the test obligation database.
Four types of error test cases are generated from the
error condition rule base:

1. Violation of \looping" rules when generating cov-
ering test cases. For example, if the syntax of the
interface states that the input must have 1 alpha-
betic character followed by 6 numeric characters,
the implied loops are violated by creating tests
with 0 and 7 numeric characters.

2. Top, intermediate, and �eld-level syntax errors. If
the grammar for the input syntax has several lev-
els of hierarchy, then terminal and non-terminal
symbols are interchanged at the intermediate lev-
els in the grammar hierarchy.

3. Delimiter errors. Error test cases are generated
by inserting two delimiters into valid test cases in
randomly selected locations.

4. Violation of expected values. Expected nu-
meric values are replaced with alphabetic values,
and expected alphabetic values are replaced with
numbers.

Two types of error test cases are generated from the
test obligation database. The �rst is for an overloaded
token static error/ambiguous grammar static error.
An overloaded token is inserted into the ambiguous
elements of a test case, based on the ambiguous value
and the ambiguous character numbers identi�ed dur-
ing static analysis. Second is for a catenation static
error. The values that were identi�ed as possibly cate-
nating each other (user accidentally types information
into the next �eld since adjacent �elds have the same



algorithm: CoverTestCases (AllTables)
input: All CurTab tables.
output: Valid and invalid test cases to cover the input grammar.

declare: Record -- Record of table tokens: (table name, element num, element name,
position, class of values, size, class, value num, value)
CurTab -- Current table being processed
CurRec -- Current record being examined
V -- Name of a table

W, CurValue -- Current record values
i -- integer
LoopHandler -- fOnce, N, N Plus one, Zerog
Expected Outcome -- fValid, Invalidg

CoverTestCases (AllTables)
BEGIN -- Algorithm CoverTestCases

FOREACH Table CurTab IN AllTabs DO
V = Get (CurTab.TableName)
Write V to MS Word file and test case table
FOREACH Record CurRec IN CurTab DO

WHILE (CurRec.ElementName != PrevRec.ElementName) DO
Write CurRec.ElementName to MS Word file and test case table

i = 1

-- If not Class of Values (e.g., expected values given instead of class
-- like char, alpha, integer), write the current expected value

-- (CurRec.Value[I] to MS Word file
IF (CurRec.Class of Values == No) THEN

write CurRec.Value[i] to MS Word file and test case table
CurValue = CurRec.Value[i]
i = i + 1

ELSE -- it is Class of Values
FOR Loop Handler = Once TO Zero DO

-- Handle the loop 0, 1, N, and N + 1 times test cases
CASE Loop Handler OF
Once: -- 1 time through loop

-- Select Value selects a value from the class of values
W = Select Value (CurRec.Value)
Write W to MS Word file and test case table
-- Size Check returns Valid if i =< CurRec.Size, Invalid otherwise
Expected Outcome = Size Check(I)

i = i + 1
N: -- N times through the loop

WHILE (CurRec.ElementName != PrevRec.ElementName) DO
W = Select Value(CurRec.Value)
Write W to MS Word file and test case table

i = i + 1
CurRec = GetNext(CurTab)

ENDWHILE
Expected Outcome = Valid

N Plus One: -- N + 1 times through the loop
WHILE (CurRec.ElementName != PrevRec.ElementName) DO

W = Select Value(CurRec.Value)
write W to MS Word file and test case table
i = i + 1

CurRec = GetNext(CurTab)
ENDWHILE
W = Select Value(CurRec.Value)
i = i + 1
Expected Outcome = Invalid

Figure 3: The CoverTestCases Algorithm



Zero:
Expected Outcome = Invalid

ENDCASE
ENDFOR -- Loop Handler

ENDIF -- Class of Values = No
ENDWHILE -- ElementNames not equal

ENDFOREACH -- Record CurRec
Write Expected Outcome to MS Word file and test case table

ENDFOREACH -- Table CurTable

END Algorithm CoverTestCases

Figure 3: The CoverTestCases Algorithm { continued

Import
Spec
Tables

Perform
Static
Analysis

Generate
Covering
Test Cases

Generate
Error
Cases

Interface
Spec
Tables

Database
of Tables

Test Obligation,
Test Heuristic
Databases

Database
of Tables

Warnings/Error
Msgs, Test
Obligation DB

All−Edges
Test Cases

Error Test
Cases

Figure 4: MICASA Architecture

data type, no expected values, and no delimiters) are
duplicated into the adjacent �elds.

4 MICASA: A Proof-of-concept Sys-
tem

To demonstrate the e�ectiveness of IVT, a proof-
of-concept system was developed. This tool accepts
input speci�cations, performs the analyses described
in Section 3, and automatically generates system-level
tests. The tool is called Method for Input Cases and
Static Analysis (MICASA).

MICASA runs under Windows NT. It is written
in about 6500 lines of Visual C++ and relies on MS
Access tables and databases. A high level architecture
is shown in Figure 4. MICASA has four major sub-
systems, shown in square boxes in the middle. The
Import Speci�cation Tables subsystem accepts the in-
terface speci�cations, and translates them to a stan-
dardized, intermediate form. This Database of Tables
is then fed to the other three subsystems, which gener-
ate messages about the input speci�cations, test obli-
gations, and test cases. The Test Heuristic Database is
encoded directly into the MICASA algorithms. Dur-
ing use, MICASA took between 5 and 30 seconds per
test case to execute.

Static
Analysis
Screen

Generate
Test Cases
Screen

Import Data
Screen

Open File
Dialog
Screen

Introduction
Screen

Cons. Check
for Type 3
Table Screen

Catenation
Check
Screen

Ambiguous
Grammar
Screen

Overloaded
Token Check
Screen

File Type

File Name

Table Name

Table Name,
Test Oblig. Table

Table Name

Table Name

Table Name

Table Name

Figure 5: MICASA Screen Flow

MICASA uses a small graphical user interface.
Most screens have four buttons and o�er the options
Cancel, Back, Next, and Finish. Most interaction by
users is with radio buttons. MICASA leads users se-
quentially through the steps of the IVT method. This
sequence of screens is illustrated in Figure 5. The steps
are primarily sequential, a user enters the name of a
�le that contains the input speci�cations, the data is
read, and then static analysis is performed. Users can
select which types of static analysis to perform, then
test cases are generated.

4.1 Import Speci�cation Tables

The Import Spec Tables function allows users to im-
port information from digital interface speci�cations.
MICASA accepts at �les and MS Word �les that de-
scribe the interface speci�cation tables. This function
performs three major processing steps. First, the in-
troduction screen asks the users if the table is type
1 or 3 (de�ned in Section 3). If a type 3 table, MI-
CASA asks if consistency checking is to be performed
on an entire Computer Software Con�guration Item.
The second step is to get the name of the �le(s) to
be imported from the user. Third, MICASA imports
the provided �le(s) into MS Access tables. The output



from this function is an MS Access database of tables
for the interface speci�cation.

4.2 Perform Static Analysis

The Perform Static Analysis function allows users
to perform a number of static checks on the interface
tables: consistency, completeness, ambiguous gram-
mar, overloaded token, and potential catenation. The
input is the interface table information that is created
by Import Spec Tables and stored in the MS Access
database. There are �ve processing steps performed
by this function: (1) users can perform static analy-
sis, (2) when the main table is created, the users can
initiate a consistency check on the table, (3) users can
check for overloaded tokens, (4) users can check for
ambiguous grammar, and (5) users can check for possi-
ble catenation errors. The output from static analysis
is a set of MS Access database tables containing error
records, as well as printouts of these error reports.

4.3 Generate Covering Test Cases

Users can generate all-edges test cases for the Type
1 interface tables stored in MS Access. The input is
the interface table information stored in the MS Access
database. This function automatically generates test
cases to satisfy the all-edges criterion on the syntax
graph. Users enter the document and system name.
The output is a set of MS Access database tables con-
taining test cases. These can be displayed in MS Ac-
cess, or can be formatted as Test Plans using an MS
Word template.

4.4 Generate Error Test Cases

Users can generate error test cases for the Type 1
interface tables stored in MS Access. The input is the
interface table information stored in the MS Access
database, the test obligation database generated dur-
ing static analysis, and the test case heuristics. An
error test case is generated for each test obligation in
the test obligation database. Next, the Beizer and
Marick heuristics are used to generate error cases, as
described in Section 3. This function is automatically
performed after Generate Covering Test Cases. Users
are shown the number of test cases that have already
been generated (under Generate Covering Test Cases
function), and users are given the option to generate
error cases or to return to the previous function. After
the Generate Error Test Cases function is complete,
all duplicate test cases are deleted. The outputs from
this function are additions to the MS Access database

tables containing test cases. Again, these can be dis-
played in MS Access or can be formatted as Test Plans
using an MS Word template.

5 Empirical Validation

This section presents empirical results that demon-
strate the feasibility, practicality, and e�ectiveness of
the IVT method. Real-world, industry applications
were used in a multi-subject experiment to compare
the IVT method with human subjects. The experi-
mental design and the experimental subjects are de-
scribed, then speci�c results are presented.

The goal of the experiment was to examine how well
the IVT method performs static analysis and gener-
ates test cases as compared to senior software testers.
Eight senior testers were used, each performing the
same activities as the MICASA tool. The experiment
was divided into three steps: (1) perform analysis of
the speci�cations, (2) generate test cases for the spec-
i�cations, and (3) execute the test cases.

Volunteers were used for the experiment, and many
dropped out or did not complete the experiment. All
but one tester worked with the �rst author, but the
experiment was not part of their work duties. Most
of them already had at least a passing familiarity with
the software that was used. The experienced testers
were de�ned as having at least seven years of soft-
ware development/information technology experience
and at least three years of testing experience. Neither
of the authors participated in the experiment.

Existing software subsystems of the Tomahawk
Cruise missile mission planning system were used.
Tomahawk Planning System (TPS) is comprised of
roughly 650,000 lines of code running on HP TAC-
4s under Unix. TPS was developed by Boeing and
primarily written in Ada with some FORTRAN and
C. A number of Commercial O�-the-Shelf (COTS)
products have been integrated into TPS, including In-
formix, Open Dialogue, and Figaro. Digital Imagery
Workstation Suite (DIWS) runs under DEC VMS and
consists of over 1 million lines of Ada code, with a
small amount of Assembler and FORTRAN. Some
code runs in multiple microprocessors. DIWS was
developed by General Dynamics Electronics Division.
Precision Targeting Workstation (PTW) is hosted on
TAC-4 workstations, runs under Unix, and is written
in C. The system is roughly 43,000 lines of code, and
was developed by General Dynamics Electronics Divi-
sion.

The design for Part I of the experiment consisted
of four testers manually analyzing interface speci�ca-
tion tables with one tester using the MICASA pro-



totype to automatically analyze the same speci�ca-
tions. Five di�erent tables were analyzed: two spec-
i�cation tables (3.2.4.2.1.1.3-5, 3.2.4.2.2.1.3-1) for the
TPS to DIWS interface (Tomahawk document) (Sys-
tem A); two speci�cation tables (Attributes Part of
Doc Jecmics, Attributes Not Part of Doc Jecmics) for
the commercial version of the Joint Engineering Data
Management Information and Control System (JED-
MICS) (System B); and a speci�cation table (3.2.4.2-
1) for the PTW from the 3900/113 document (U.S.
Navy) (System C).

The TPS-DIWS speci�cation was \overlapping",
(that is, all �ve testers were asked to analyze this
document), to allow for examination of possible \skill
level" ambiguities of the various testers. By having
all �ve testers analyze the same speci�cation, a par-
ticularly weak or particularly strong tester could be
distinguished. For example, if one tester found �ve
times as many defects as the other testers in the TPS-
DIWS document, she would be considered an outlier
(very adept tester). One tester was not able to com-
plete analysis of this document, however.

All defects were naturally occurring, not seeded.
Testers B1 and B8 performed thorough reviews of all
three subject system tables to give the researcher a feel
for the \quality" of the tables. Analysis was not per-
formed on the number or percentage of defects found
by MICASA and other testers that were not found
by Testers B1 and B8, but their reviews gave the re-
searcher a good idea of how many defects existed in
each table.

The design for Part II of the experiment consisted of
six testers manually generating test cases for interface
speci�cation tables with one tester using the MICASA
prototype to automatically generate cases. Five di�er-
ent tables were used: two speci�cation tables (Table 1:
3.2.4.2.1.1.3-5, Table 2: 3.2.4.2.2.1.3-1) for the Tom-
ahawk Planning System to Digital Imagery Worksta-
tion Suite interface (Tomahawk document); two spec-
i�cation tables (Attributes Part of Doc Jecmics, At-
tributes Not Part of Doc Jecmics) for the commercial
version of the Joint Engineering Data Management In-
formation and Control System; and a speci�cation ta-
ble (3.2.4.2-1) for the Precision Targeting Workstation
from the 3900/113 document (U.S. Navy). The TPS-
DIWS document was overlapping (that is, all seven
testers were asked to use this document) to allow for
examination of possible skill level ambiguities of the
various testers. One tester was not able to complete
test cases for this document, however. It took the
testers a few hours to learn to use MICASA, and from
7 to 130 minutes to develop each test case.

The design for Part III of the experiment consisted

of one tester executing the manually generated test
cases plus the MICASA generated test cases. The
manually generated test cases were formatted to be
identical to the MICASA generated cases. Only the
researcher knew which cases came from MICASA and
which cases were manually generated. The JEDMICS
system was not available to the researcher for exe-
cuting test cases because this commercial product is
viewed as proprietary by the developer. The TPS-
DIWS software was still under development during the
course of the experiment. As a result, one table was
used, a speci�cation table for the Precision Targeting
Workstation.

5.1 Results and Discussion

Four testers analyzed �ve requirements speci�ca-
tions documents (one FBI speci�cation, one commer-
cial speci�cation, and three Navy speci�cations): all
four analyzed documents 1 and 2, and two analyzed
documents 3, 4, and 5. Two testers generated test
cases for the PTW software. The results are shown
in Table 1. The speci�cation defects that were found
were divided into syntax and semantic defects. Not
surprisingly, the automated tool found far more syn-
tactic defects, and the human testers found more se-
mantic defects. The defect detection rate is the mean
number of test cases needed to �nd a defect, and the
minutes per fault found is the mean wall clock time
(in minutes) needed to detect each fault.

Table 1: Empirical Results

MICASA Testers

Syntax spec. defects found 524 21
Total spec. defects found 524 106
Number of test cases 48 7
Software faults found 20 27
Defect detection rate 7.4 4.6
Minutes per fault found 8.4 72.2

Note that the Testers column includes four testers
for the speci�cation analysis, and two for the exe-
cution. For the software faults, one tester found 21
faults, and the other found 6. Although one tester
found one more fault than MICASA, the cost of using
the MICASA tool was much lower. Taking time to de-
velop and execute the tests as a rough approximation
of cost, it cost 8.6 times as much for humans to detect
faults as for the automated tool. Also, MICASA found
speci�cation defects and software faults not found by
humans.

An interesting observation has to do with the qual-
ity of the speci�cation tables. For part I of the ex-



periment, it was noted that the senior testers did not
�nd a very high percentage of the defects present in
the poorest quality speci�cation tables. When spec-
i�cation tables were of particularly poor quality, the
participants seemed to make very little e�ort to iden-
tify defects. Instead they seemed to put their e�ort
on the tables that were of higher quality. This phe-
nomenon also showed up in part II of the experiment.

6 Conclusions

Validation results show that the IVT method, as
implemented in the MICASA tool, found more speci�-
cation defects than senior testers, generated test cases
with higher syntactic coverage than senior testers, gen-
erated test cases that took less time to execute, gener-
ated test cases that took less time to identify a defect
than senior testers, and found defects that went unde-
tected by senior testers.

The results indicate that static analysis of require-
ments speci�cations can detect syntactic defects, and
do it early in the lifecycle. More importantly, these
syntactic defects can be used as the basis for generat-
ing test cases that will identify defects once the soft-
ware application has been developed, much later in the
lifecycle. The requirements speci�cation defects iden-
ti�ed by this method were not found by senior testers.
Half of the software defects found by this method were
not found by senior testers. And this method took on
average 8.4 minutes to identify a defect as compared
to 72.2 minutes for a senior tester. So the method
is e�cient enough to be used in practice, and indeed,
MICASA is presently being used on the Tomahawk
Cruise Missile Project. On the other hand, these re-
sults do not indicate that we should \�re the testers".
The human testers found several faults that were not
found by MICASA. These were mostly related to se-
mantic problems that the tool could not focus on. It
could be said that in addition to saving large amounts
of money, MICASA allows the human testers to focus
their energies on the interesting parts of designing test
cases for semantic problems.

These results suggest several conclusions for soft-
ware developers. To testers, it means that they should
not overlook syntactic-oriented test cases, and that
they should consider introducing syntactic static anal-
ysis of speci�cations into their early life cycle activ-
ities. To developers, it means that emphasis must
be put on specifying and designing robust interfaces.
Developers may also consider introducing syntactic
deskchecks of their interface speci�cations into their
software development process. To project managers,
it means that interface speci�cations are a very im-

portant target of veri�cation and validation activities.
Project managers must allow testers to begin their
tasks early in the life cycle. Managers should also re-
quire developers to provide as much detail as possible
in the interface speci�cations, facilitating automated
analysis as much as possible. Similarly, customers
should require interface speci�cations to include as
much information as possible, such as expected data
values and whether or not a �eld is required or op-
tional.

References

[1] F. Bazzichi and I. Spadafora. An automatic gen-
erator for compiler testing. IEEE Transactions
on Software Engineering, SE-8(4):343{353, July
1982.

[2] B. Beizer. Software Testing Techniques. Van Nos-
trand Reinhold, Inc, New York NY, 2nd edition,
1990. ISBN 0-442-20672-0.

[3] D. L. Bird and C. U. Munoz. Automatic gen-
eration of random self-checking test cases. IBM
Systems Journal, 22(3):229{345, 1983.

[4] A. M. Davis. Software Requirements Analysis
and Speci�cation. PTR Prentice Hall, Englewood
Cli�s, NJ, 1990.

[5] A. G. Duncan and J. S. Hutchison. Using at-
tributed grammars to test designs and implemen-
tations. In Proceedings of the 5th International
Conference on Software Engineering (ICSE 5),
pages 170{177, San Diego, CA, March 1981. IEEE
Computer Society Press.

[6] Institute for Defense Analysis. Analysis of soft-
ware obsolescence in the DoD: Progress report.
IDA Report M-326, Institute for Defense Analy-
ses, February 1987.

[7] John Gough. Syntax Analysis and Software Tools.
Addison-Wesley Publishing Company Inc., New
York, New York, 1988.

[8] K. V. Hanford. Automatic generation of test
cases. IBM Systems Journal, (4):242{257, 1970.

[9] J. H. Hayes. Input Validation Testing:
A System Level, Early Lifecycle Technique.
PhD thesis, George Mason University, Fairfax
VA, 1998. Technical report ISSE-TR-98-02,
http://www.ise.gmu.edu/techrep.



[10] J. H. Hayes and C. Burgess. Partially automated
in-line documentation (PAID): Design and imple-
mentation of a software maintenance tool. In Pro-
ceedings of the 1988 IEEE Conference on Soft-
ware Maintenance, Phoenix, AZ, October 1988.
IEEE Computer Society Press.

[11] J. H. Hayes, J. Weatherbee, and L. Zelinski. A
tool for performing software interface analysis. In
Proceedings of the First International Conference
on Software Quality, Dayton, OH, October 1991.

[12] D. C. Ince. The automatic generation of test
data. The Computer Journal, 30(1):63{69, Febru-
ary 1987.

[13] L. M. Liu and N. S. Prywes. SPCHECK: A
speci�cation-based tool for interface checking of
large, real-time/distributed systems. In Proceed-
ings of Information Processing (IFIP), San Fran-
cisco, 1989.

[14] Brian Marick. The Craft of Software Testing:
Subsystem Testing, Including Object-Based and
Object-Oriented Testing. Prentice-Hall, Engle-
wood Cli�s, New Jersey, 1995.

[15] Peter M. Maurer. Generating testing data with
enhanced context-free grammars. IEEE Software,
7(4), July 1990.

[16] Department of Defense. DOD-STD-2167A: De-
fense System Software Development. Department
of Defense, February 1988.

[17] Department of Defense. MIL-STD-498: Software
Development and Documentation. Department of
Defense, December 1994.

[18] D. L. Parnas. Letters to the editors. American
Scientists, 74:12{15, January-February 1986.

[19] P. Purdom. A sentence generator for testing
parsers. BIT, 12:366{375, July 1972.

[20] A. von Mayrhauser, J. Walls, and R. Mraz.
Sleuth: A domain based testing tool. In Proceed-
ings of the IEEE International Test Conference,
pages 840{849, 1994.

[21] L. J. White. Software testing and veri�cation. In
Marshall C. Yovits, editor, Advances in Comput-
ers, volume 26, pages 335{390. Academic Press,
Inc, 1987.


