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Abstract—Numerous  studies  have  identified  measures  that 
relate to the fault-proneness of software components. An issue 
practitioners face in implementing these measures is that the 
measures tend to provide predictions at a very high level, for 
instance  the  per-module  level,  so  it  is  difficult  to  provide 
specific  recommendations  based  on  those  predictions.  We 
examine  a more  specific  measure,  called software testability, 
based on work in test case generation. We discuss how it could 
be  used  to  make  more  specific  code  improvement 
recommendations at the line-of-code level. In our experiment, 
we compare the testability of fault prone lines with unchanged 
lines. We apply the experiment to Apache HTTP Server and 
find  that  developers  more  readily  identify  faults  in  highly 
testable code. We then compare testability as a fault proneness 
predictor  to  McCabe's  cyclomatic  complexity  and  find 
testability has higher recall.

Keywords-fault  proneness;  testing;  code  coverage;  static  
analysis

I. INTRODUCTION

The  importance  of  fault  proneness  metrics  is  usually 
explained with succinct reasons, such as “methodologies and 
techniques  for  predicting  the  testing  effort,  monitoring 
process costs, and measuring results can help in increasing 
efficacy  of  software  testing”  [1].  These  reasons  make 
assumptions about  the importance  of  software  testing that 
outside observers may not share. We hear anecdotal stories 
from local  software development  firms where clients state 
during negotiations that they refuse to pay for time spent on 
testing,  including  the  types  of  tests  that  test-driven 
development involves (such as unit tests).

During  negotiations,  their  clients  cite  two  issues  with 
paying the developers to test. First, they see no reason why 
highly  paid  and  qualified  developers  should  make  errors. 
Second,  they  believe  that  testing  performed  by  the 
developers presents a conflict of interest. A series of Dilbert 
comics parodies this concern, where the developers are told 
they will earn $10 for every bug fixed [2]. From the client's 
perspective,  the  developers  are  no  different  from Dilbert. 
These  two  issues  give  clients  pause  and  thus  our  local 
development  companies  simply  see  no  reason  to  train 
developers  to  test,  much  less  hire  designated  quality 
assurance staff.

Inspired by this problem, we issue a challenge to the fault 
proneness community to use their huge collection of metrics 
to  propose actionable  development  plans to  improve code 
quality. In the same vein as formal specification, rather than 
testing more,  we  propose  developing  more  to  reduce  the 
testing burden of proof.  To this end,  we describe  a novel 
fault proneness metric based on previous work in test case 
generation.  Our  contributions  in  this  paper  include:  our 
position on using fault proneness metrics to improve code 
quality,  our  new  testability  metric,  our  tools,  and  our 
experiment.

In Section II, we discuss related work. In Section III, we 
describe our metric,  testability, and illustrate our vision of 
how a developer could use certain fault proneness metrics to 
systematically  reduce  fault  proneness.  In  Section  IV,  we 
describe a case study performed on the Apache HTTP Server 
and discuss our surprising results.

II. RELATED WORK

This section discusses  related  work in  fault  proneness, 
testabilty, and automated test case generation.

A. Fault proneness
While numerous studies  have been published on high-

level  fault  proneness,  Hata  et  al.  claim to  be  the  first  to 
examine fault proneness on the per-line level. Their approach 
was vocabulary-based: they trained a machine learner on the 
text of fault-prone lines, then looked for files containing lines 
with  similar  vocabulary.  They  backtested  their  work  by 
training  the  machine  learner  on  Eclipse  changesets.  They 
used  the  changesets  to  predict  which  modules  in  Eclipse 
would contain faults. To assess their results, they measured 
recall and precision on the per-module level. They surveyed 
other work to compare their results [3].

On the module level, Hata et al. stated high recall  and 
precision.  Unfortunately,  the  results  did  not  fit  the 
granularity  of  the  estimator.  The estimator  was  trained  to 
identify specific problem lines, but Hata et al. did not state 
how well  their  classifier  identified  the  actual  faulty  lines. 
This oversight could easily be corrected in future work using 
a more advanced experiment design.

McCabe introduced  a  seminal  fault-proneness  measure 
called  cyclomatic  complexity.  Given a control  flow graph 
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with  one  entry  and  one  exit  node  that  are  not  strongly 
connected  to  each  other,  McCabe  defines  cyclomatic 
complexity as:

M=E−N+2 (1)

where E is the number of edges and N is the number of 
nodes in the graph. To simplify testing, McCabe proves code 
transformations  can  reduce  this  complexity,  but  does  not 
give  guidance  as  to  which  transformation  is  optimal  at  a 
given point  [4]. In our experiment, we compared McCabe's 
cyclomatic  complexity  to  our  per-line  analysis  of  fault 
proneness, called testability.

B. Testability
Voas first  introduced  the notion of  software  testability 

when  examining  the  issue  of  measuring  fault  size.  He 
identified  three  requirements  of  testable  faults:  execution 
(the code is executed),  infection (the code performs a bad 
computation),  and propagation (the output is  corrupted by 
the bad computation). He proposed a randomized algorithm 
for  dynamically  inferring  the  testability  of  code.  The 
weakness of this dynamic approach was that the tester had to 
write  the  universe  of  test  cases  for  a  given  program  to 
measure  testability.  In  evaluating  his  work,  Voas  only 
examined the accuracy of his execution computation [5].

Freedman  addressed  the  problem  of  the  lack  of 
propagation  of  variables  in  testing  and  created  domain 
testability to measure it.  Freedman formalized two desired 
qualities  of  domain-testable  programs:  observability  (the 
program under test is purely a function of its parameters, it 
uses  no global  state)  and  controllability  (the  program can 
output all values in its defined range). Freedman measured 
domain testability by creating a domain-testable version of 
the program and then counting how many parameters he had 
to add; the more added parameters,  the worse the domain 
testability.  Freedman's  students  evaluated  the  measure  by 
coding  and  testing  programs  according  to  specifications 
written  with  and  without  domain  testability  in  mind. 
Freedman  found  that  domain-testable  specifications  help 
speed up development [6].

C. Automated test path construction
Li  et  al.  examined  algorithms  for  reducing  coverage 

requirements into a smaller  set of actual  test paths. When 
graph-based  coverage  criteria  produce  many requirements, 
sometimes there is overlap in the requirements, causing the 
criteria to overestimate the amount of work required to test 
the  program.  Li  et  al.  cast  the  problem  of  minimizing 
coverage requirements into a prefix graph. Li et al. detailed 
algorithms to  extend the criteria into full test paths. They 
provided a tool, Graph-Coverage, for use in our research 
[7].

NASA's  Java  Path  Finder  uses  formal  methods  to 
construct all feasible paths through a function. Unlike Li et 
al.'s  tool,  Path  Finder  filters  out  impossible  paths  and 

generates  concrete  test  values  to  follow those  paths.  The 
downside is that Path Finder cannot abstract I/O operations, 
so it is limited to operations on numbers and strings  [8]. If 
Path Finder were to overcome this limitation, we see use for 
it in the following definition of testability.

III. TESTABILITY

We  define  testability  with  an  intuitive  static 
approximation to the Voas execution probability.  For each 
function in the software, we generate the function's control 
flow graph. We feed the graph to the  Graph-Coverage 
tool  to  compute  the  minimum  set  of  paths  required  to 
achieve node coverage. We overlay all of the paths onto the 
graph. We define the testability of each node in the graph as 
the  proportion  of  paths  passing  through  that  node.  A 
testability  of  1  means  the  node  has  perfect  testability.  A 
testability of 0 means the node is unreachable.

A. Formal definition
Let  Graph-Coverage(G ,NODE)  be  the  minimum 

set of test paths satisfying node coverage for graph  G. Let 
Graph-Coverage(G ,NODE)b  be  the  subset  of 
Graph-Coverage(G ,NODE)  test paths containing node 

b. We define the testability of node b as:

t (b)=
∣Graph-Coverage(G ,NODE)b∣
∣Graph-Coverage (G ,NODE)∣ . (2)

Graph-Coverage refers to the Li et al. prefix graph 
algorithm  mentioned  in  the  related  work.  It  can  be 
substituted for an equivalent program; for instance, NASA's 
Path Finder would suffice. Similarly node coverage could be 
substituted with a stronger criterion (node coverage happens 
to  scale  well  from  a  computational  standpoint).  We  also 
envision  practitioners  extracting  test  paths  from  their 
operational  profiles  and/or  test  sets  in  place  of  Graph-
Coverage.  In  short,  there  are  many  possibilites.  We 
challenge  the  community  to  examine  the  effectiveness  of 
these other techniques in place of our static approximation.

B. Implementation
We have developed tools to compute the above testability 

definition for arbitrary C and Java code. We developed the 
tools with maximum reuse of common Linux tools in mind. 
We hope that practitioners will benefit from our insights into 
developing tools of their own.

The tools build a database mapping the source code line 
numbers to the control flow graph. To build the database, the 
tools parse the compiler's internal control flow graphs. From 
this  database,  the  tools  computes  the  testability  scores  by 
invoking  Graph-Coverage,  parsing  that  format,  then 
computing  (2).  To  get  human-readable  results,  the  tools 
perform a  join  operation  to  map the  Graph-Coverage 
output  back to source  line numbers.  They also generate  a 
GraphViz [9] map.
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IV. CASE STUDY

In  our  case  study,  we  examined  the  link  between 
testability  and  fault  proneness  in  Apache  HTTP  Server, 
otherwise known as “httpd” or simply “Apache.” We also 
examined  the  quality  of  testability  as  a  fault  proneness 
predictor in terms of recall and precision. To our knowledge, 
no one has studied fault proneness on a per-line basis, so for 
comparison, we also compared two other metrics: McCabe 
cyclomatic complexity and random.

Apache  is  a  well-known  open-source  HTTP  server 
written entirely in C. Its licensing allows many commercial 
HTTP servers to reuse its code. We examined the Apache 
“trunk” SVN revision history to conduct our case study.

A. Research Questions
This section states our hypotheses. We were interested in 

two ideas: RQ1) how the testability of Fault Prone (FP) code 
compared with Not Fault Prone (NFP) code, and RQ2) how 
well our testability measure predicted the precise location of 
faults.

1) Difference in means (RQ1)
Our  null  hypothesis  ( H0 )  states  that  there  is  no 

difference between the mean testability of FP code and the 
mean testability of NFP code. Our alternate hypotheses states 
that there is a difference, either:

• H1 : FP code had lower testability than NFP 
code (what we posit), or

• H2 : FP had higher testability than NFP code.
We  reject  the  null  hypothesis  if  the  difference  is 

significant  within  95% confidence  ( α=0.05 ).  We accept 
the null hypothesis only if we have at least 80% statistical 
power ( β=0.2 ) and the difference is not significant.

2) Recall and precision (RQ2)
To  determine  the  quality  of  our  predictions,  we  also 

performed  a  traditional  fault  proneness  experiment  by 
assessing the recall and precision of our estimates. We define 
recall, precision, and the hybrid measure F1 as:

recall= true positives
true positives+false negatives (3)

precision= true positives
true positives+false positives (4)

F1=2⋅ precision⋅recall
precision+recall . (5)

Thus our null hypothesis is that there is no difference in 
recall and precision between testability, McCabe cyclomatic 
complexity,  and  random.  Our  alternate  hypothesis  is  that 
there is a difference (two-sided).

B. Procedure
We examined 43 random revisions modifying C code of 

Apache trunk in the range [1082630,1377685]. We picked 
43 based on a preliminary statistical power analysis for an 
overall  hypothesis  test.  We  skipped  revisions  correcting 
spelling  mistakes  in  comments  or  Windows-specific  code 
(we could not cross-compile it on our Linux system). When 
we picked  revisions at  random from the above range,  we 
noticed  most  of  them  changed  the  Apache  “modules”  as 
opposed to the actual server.  Historically,  we observed the 
proportion in Apache was more even. To reduce the potential 
bias of using so many revisions to modules, we selected 22 
revisions to the modules and 21 revisions to the server.

For each revision, we identified the C files changed by 
that revision. For each changed C file,  we ran our tool to 
compute the testability of each source line.  The testability 
scores  for  the  changed lines  formed the FP data  set.  The 
remaining scores went into the NFP data set.

To implement  this  procedure,  we configured  the  SVN 
diff to output an ed [14] script, an old but easy-to-parse form 
of diff that gives the line numbers of changed and deleted 
lines with respect to the original file's line numbers. We then 
built the database for the original revision and queried the 
database for the testability scores of the changed lines. To 
handle added lines, we computed the testability of the added 
lines in reverse: we updated to the next revision, recompiled 
the database, and extracted the deleted line numbers in the 
reverse SVN diff.

Testability  returns  a  number  in  [0,1],  but  cyclomatic 
complexity  returns  a  positive  integer;  both  metrics  need 
thresholds  defining  whether  a  line  is  FP  or  NFP.  To  set 
thresholds in a “fair” way, we computed 11 percent ranks in 
[0,1],  incrementing  0.1  every  time.  For  each  rank,  we 
computed  the  corresponding  testability  and  McCabe 
cyclomatic complexity. We used the values as our FP/NFP 
thresholds.

We also plotted the recall and precision from randomly 
ranking  blocks.  In  theory,  the  recall  of  random  choices 
should  scale  linearly  from 0  to  1,  while  the  precision  of 
random should remain roughly flat at the overall FP sample 
proportion.  On  the  graphs  of  recall,  precision,  and  F1, 
methods  that  are  better  than  random  will  be  superlinear 
(above random) while methods that are worse than random 
will be sublinear (below random).

C. Results
This section discusses the results of the comparison of 

testability means as well as the recall and precision.

TABLE I.  APACHE SUMMARY STATISTICS

Measure FP NFP

Basic blocks 341 22638

Mean 0.34 0.31

Variance 0.10 0.12
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1) Difference in means (RQ1)
Table I summarizes the files present in the 43 revisions. 

As Table I shows, only about ~1.5% of basic blocks changed 
over the 43 revisions. The FP code, on average, had higher 
testability  than  the  NFP code.  In  other  words:  developers 
found faults in easy-to-test code, supporting  H2 . The data 
was  not  normally  distributed,  so  to  determine  the 
significance  of  the  difference  in  the  means,  we  used  the 
ranksum test  in  Matlab  corresponding  to  the  Mann-
Whitney U-test nonparametric comparison of means.

Table II gives the results of the test. As Table II shows, 
the difference in the means was significantly different and 
exceeded our confidence threshold of 95%. The effect size, 
Cohen's  d, (the difference between means normalized by a 
standard  deviation)  was only 0.06,  but  the difference  was 
still  significant  because  the  data  was  not  normally 
distributed. Thus we reject H0  in favor of H2 .

To perform finer-grained testing, we applied k-means to 
cluster the blocks into three testability groups: low, medium, 
and high testability. Within each cluster, we again partitioned 
the blocks into FP and NFP sub-clusters and repeated our 
analysis. We applied the t-test to compare the FP and NFP 
sub-clusters.  Table  III  summarizes  our  results.  Within the 
“Low”  testability  cluster,  the  FP  blocks  had  significantly 
higher testability that the NFP blocks. The effect size was 
moderate  at  0.6428.  Thus the  trend  of  developers  finding 

bugs in easy-to-test code was actually strongest in the Low 
group.

The  medium  and  high  testability  clusters  are 
inconclusive. The corresponding p-values in Table III lead us 
to not reject H0 . However, the statistical power is too low to 
actually  accept  H0 .  Increasing  statistical  power  is  tricky 
because it is impeded by unequal sample proportions. While 
we could have easily looked at more revisions, we cannot 
convince  the  Apache  developers  to  change  more  lines  of 
code per revision.

2) Recall and precision (RQ2)
Figures 3, 4, and 5 show the recall, precision, and F1 of 

predicting the precise location of faults using the same 43 
revisions from the first  part  of the study.  The “Random-” 
plots show the effects of picking the stated percent of blocks 
at random. The “Testability-” plots show the effects of using 
the percent rank of the testability scores as an upper bound 
threshold. The “McCabe-” plots similarly show the effects of 
using the percent  ranks of the cyclomatic complexity as a 
lower bound  threshold (we order this series in reverse for 
comparison).

As  Fig.  3  shows,  testability  was  not  significantly 
different than random at recall. According to a matched pair 
t-test, the p-value was 0.16. McCabe had significantly worse 
recall than testability (p-value 0.04) and random (0.01).

As Fig.  4  shows,  testability  did not  have  significantly 
different  precision  than  McCabe  (p-value  0.49)  despite 
appearing  slightly  higher.  Both  metrics  had  significantly 

Fig. 3.  Recall of testability, cyclomatic complexity, and random

TABLE II.  RESULTS OF U-TEST BETWEEN FP AND NFP GROUPS

Measure Value

p-value 1.35∗10−6

Effect size (Cohen's d) 0.06

TABLE III.  RESULTS OF 3-MEANS CLUSTERING

Measure Low Medium High

Blocks (FP) 209 72 60

Blocks (NFP) 14157 4139 4342

Mean 0.0780 0.4487 0.9462

Mean (FP) 0.1215 0.4586 0.9394

Mean (NFP) 0.0772 0.4486 0.9463

Variance (FP) 0.0048 0.0130 0.0073

Variance (NFP) 0.0048 0.0161 0.0081

p-value 4∗10−17 0.4611 0.3336

Effect size d 0.6428 0.0788 0.1204

Statistical power 100.00% 9% 15%
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Fig. 4.  Precision of testability, cyclomatic complexity, and random
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Fig. 5.  F1 of testability, cyclomatic complexity, and random
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worse  precision  than  random  (p-values  0.048  and  0.006, 
respectively).

As Fig.  5  shows,  testability  did not  have  significantly 
higher F1 than McCabe (p-value 0.15), but had significantly 
worse  F1  than  random  (p-value  0.04).  McCabe  was  also 
significantly worse than random (p-value 0.03). The F1 for 
both methods  peaked  at  the 80% percent  rank.  This  rank 
corresponds  to  a  cyclomatic  complexity  of  10  or  more, 
which was McCabe's rule of thumb [4]. The testability at the 
80% rank is 0.66, suggesting a rule of thumb that code with 
testability less than 0.66 needs testing.

In absolute terms, the precision of all methods examined 
was  atrocious.  Although  testability  significantly  improved 
recall over McCabe, neither method was especially precise. 
This point leads into our threats to validity.

D. Threats to validity
In  terms  of  content  validity,  we  did  not  study  all 

revisions. While we could have studied more revisions, we 
could not study all past revisions because the older revisions 
require  significant  system  modification  to  compile.  This 
factor artificially caps the precision of random. Even if we 
could  compile  all  revisions,  the  data  would  still  be 
incomplete for the usual reason: the false positive code could 
indeed have faults that have yet to be discovered. Thus the 
true  precision  of  the  methods  could  be  understated. 
Mitigating this threat is the fact that the data still supported 
McCabe's rule of thumb.

In terms of internal validity, there could be selection bias 
from using recent revisions. We tried to mitigate selection 
bias by being random, but a random selection across a longer 
time period would have been better. As said above, we could 
not compile very old revisions. Also, we did not model all 
possible  effects  on  testability,  for  instance  the  effects  of 
specific files or effects of the modules and server directories; 
we treated these as random effects.

In  terms of  external validity,  we only studied Apache. 
While Apache is a very “real world” project, it could be that 
other  projects,  such  as  Eclipse,  display  different  trends 
regarding testability and cyclomatic complexity. Hata et al. 
note that fault proneness metrics tend to perform especially 
well  on  Eclipse  [3],  so  our  results  might  not  be  directly 
comparable with Eclipse papers.

V. CONCLUSION AND FUTURE WORK

We examined recent  revisions in the Apache SVN log 
and found, to our surprise, that developers had a tendency to 
find bugs  in  easy-to-test  code.  The more  complicated  the 
code  became,  the  more  evident  the  pattern  became.  This 
result  went  against  our posited hypothesis  that  developers 
find bugs in hard-to-test code.

In Apache, we found the recall of testability as a fault-
proneness  predictor  was  significantly  better  than  McCabe 
cyclomatic complexity when applied on a per-line basis. We 
found evidence confirming McCabe's “10-or-more” rule of 

thumb for  deciding what  code  to  test.  We introduced  our 
own rule of thumb: lines with testability 0.66 or less need to 
be tested.

Our challenge to the fault proneness community is to use 
fault proneness metrics to make specific code improvement 
recommendations. We hope that such recommendations will 
help practitioners improve fault-prone code and thus simplify 
their  testing efforts.  We discussed  one  possible  approach: 
using a line-specific fault proneness metric to automatically 
refactor fault-prone lines out of complicated functions. We 
constructed  testability  with  this  approach  in  mind.  The 
current  function-level  metrics  we  see  in  fault  proneness 
studies,  such  as  McCabe  cyclomatic  complexity,  do  not 
suffice for our purposes.
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