
The Effect of Testability on Fault Proneness
A case study of the Apache HTTP Server

Mark Hays, Jane Hayes
Department of Computer Science

University of Kentucky
Lexington, USA

mahays0@engr.uky.edu, hayes@cs.uky.edu

Abstract—Numerous studies have identified measures that
relate to the fault-proneness of software components. An issue
practitioners face in implementing these measures is that the
measures tend to provide predictions at a very high level, for
instance the per-module level, so it is difficult to provide
specific recommendations based on those predictions. We
examine a more specific measure, called software testability,
based on work in test case generation. We discuss how it could
be used to make more specific code improvement
recommendations at the line-of-code level. In our experiment,
we compare the testability of fault prone lines with unchanged
lines. We apply the experiment to Apache HTTP Server and
find that developers more readily identify faults in highly
testable code. We then compare testability as a fault proneness
predictor to McCabe's cyclomatic complexity and find
testability has higher recall.

Keywords-fault proneness; testing; code coverage; static
analysis

I. INTRODUCTION

The importance of fault proneness metrics is usually
explained with succinct reasons, such as “methodologies and
techniques for predicting the testing effort, monitoring
process costs, and measuring results can help in increasing
efficacy of software testing” [1]. These reasons make
assumptions about the importance of software testing that
outside observers may not share. We hear anecdotal stories
from local software development firms where clients state
during negotiations that they refuse to pay for time spent on
testing, including the types of tests that test-driven
development involves (such as unit tests).

During negotiations, their clients cite two issues with
paying the developers to test. First, they see no reason why
highly paid and qualified developers should make errors.
Second, they believe that testing performed by the
developers presents a conflict of interest. A series of Dilbert
comics parodies this concern, where the developers are told
they will earn $10 for every bug fixed [2]. From the client's
perspective, the developers are no different from Dilbert.
These two issues give clients pause and thus our local
development companies simply see no reason to train
developers to test, much less hire designated quality
assurance staff.

Inspired by this problem, we issue a challenge to the fault
proneness community to use their huge collection of metrics
to propose actionable development plans to improve code
quality. In the same vein as formal specification, rather than
testing more, we propose developing more to reduce the
testing burden of proof. To this end, we describe a novel
fault proneness metric based on previous work in test case
generation. Our contributions in this paper include: our
position on using fault proneness metrics to improve code
quality, our new testability metric, our tools, and our
experiment.

In Section II, we discuss related work. In Section III, we
describe our metric, testability, and illustrate our vision of
how a developer could use certain fault proneness metrics to
systematically reduce fault proneness. In Section IV, we
describe a case study performed on the Apache HTTP Server
and discuss our surprising results.

II. RELATED WORK

This section discusses related work in fault proneness,
testabilty, and automated test case generation.

A. Fault proneness
While numerous studies have been published on high-

level fault proneness, Hata et al. claim to be the first to
examine fault proneness on the per-line level. Their approach
was vocabulary-based: they trained a machine learner on the
text of fault-prone lines, then looked for files containing lines
with similar vocabulary. They backtested their work by
training the machine learner on Eclipse changesets. They
used the changesets to predict which modules in Eclipse
would contain faults. To assess their results, they measured
recall and precision on the per-module level. They surveyed
other work to compare their results [3].

On the module level, Hata et al. stated high recall and
precision. Unfortunately, the results did not fit the
granularity of the estimator. The estimator was trained to
identify specific problem lines, but Hata et al. did not state
how well their classifier identified the actual faulty lines.
This oversight could easily be corrected in future work using
a more advanced experiment design.

McCabe introduced a seminal fault-proneness measure
called cyclomatic complexity. Given a control flow graph

2012 IEEE 23rd International Symposium on Software Reliability Engineering Workshops

978-0-7695-4928-6 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ISSREW.2012.48

148

2012 IEEE 23rd International Symposium on Software Reliability Engineering Workshops

978-0-7695-4928-6 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ISSREW.2012.48

153

with one entry and one exit node that are not strongly
connected to each other, McCabe defines cyclomatic
complexity as:

M=E−N+2 (1)

where E is the number of edges and N is the number of
nodes in the graph. To simplify testing, McCabe proves code
transformations can reduce this complexity, but does not
give guidance as to which transformation is optimal at a
given point [4]. In our experiment, we compared McCabe's
cyclomatic complexity to our per-line analysis of fault
proneness, called testability.

B. Testability
Voas first introduced the notion of software testability

when examining the issue of measuring fault size. He
identified three requirements of testable faults: execution
(the code is executed), infection (the code performs a bad
computation), and propagation (the output is corrupted by
the bad computation). He proposed a randomized algorithm
for dynamically inferring the testability of code. The
weakness of this dynamic approach was that the tester had to
write the universe of test cases for a given program to
measure testability. In evaluating his work, Voas only
examined the accuracy of his execution computation [5].

Freedman addressed the problem of the lack of
propagation of variables in testing and created domain
testability to measure it. Freedman formalized two desired
qualities of domain-testable programs: observability (the
program under test is purely a function of its parameters, it
uses no global state) and controllability (the program can
output all values in its defined range). Freedman measured
domain testability by creating a domain-testable version of
the program and then counting how many parameters he had
to add; the more added parameters, the worse the domain
testability. Freedman's students evaluated the measure by
coding and testing programs according to specifications
written with and without domain testability in mind.
Freedman found that domain-testable specifications help
speed up development [6].

C. Automated test path construction
Li et al. examined algorithms for reducing coverage

requirements into a smaller set of actual test paths. When
graph-based coverage criteria produce many requirements,
sometimes there is overlap in the requirements, causing the
criteria to overestimate the amount of work required to test
the program. Li et al. cast the problem of minimizing
coverage requirements into a prefix graph. Li et al. detailed
algorithms to extend the criteria into full test paths. They
provided a tool, Graph-Coverage, for use in our research
[7].

NASA's Java Path Finder uses formal methods to
construct all feasible paths through a function. Unlike Li et
al.'s tool, Path Finder filters out impossible paths and

generates concrete test values to follow those paths. The
downside is that Path Finder cannot abstract I/O operations,
so it is limited to operations on numbers and strings [8]. If
Path Finder were to overcome this limitation, we see use for
it in the following definition of testability.

III. TESTABILITY

We define testability with an intuitive static
approximation to the Voas execution probability. For each
function in the software, we generate the function's control
flow graph. We feed the graph to the Graph-Coverage
tool to compute the minimum set of paths required to
achieve node coverage. We overlay all of the paths onto the
graph. We define the testability of each node in the graph as
the proportion of paths passing through that node. A
testability of 1 means the node has perfect testability. A
testability of 0 means the node is unreachable.

A. Formal definition
Let Graph-Coverage(G ,NODE) be the minimum

set of test paths satisfying node coverage for graph G. Let
Graph-Coverage(G ,NODE)b be the subset of
Graph-Coverage(G ,NODE) test paths containing node

b. We define the testability of node b as:

t (b)=
∣Graph-Coverage(G ,NODE)b∣
∣Graph-Coverage (G ,NODE)∣ . (2)

Graph-Coverage refers to the Li et al. prefix graph
algorithm mentioned in the related work. It can be
substituted for an equivalent program; for instance, NASA's
Path Finder would suffice. Similarly node coverage could be
substituted with a stronger criterion (node coverage happens
to scale well from a computational standpoint). We also
envision practitioners extracting test paths from their
operational profiles and/or test sets in place of Graph-
Coverage. In short, there are many possibilites. We
challenge the community to examine the effectiveness of
these other techniques in place of our static approximation.

B. Implementation
We have developed tools to compute the above testability

definition for arbitrary C and Java code. We developed the
tools with maximum reuse of common Linux tools in mind.
We hope that practitioners will benefit from our insights into
developing tools of their own.

The tools build a database mapping the source code line
numbers to the control flow graph. To build the database, the
tools parse the compiler's internal control flow graphs. From
this database, the tools computes the testability scores by
invoking Graph-Coverage, parsing that format, then
computing (2). To get human-readable results, the tools
perform a join operation to map the Graph-Coverage
output back to source line numbers. They also generate a
GraphViz [9] map.

149154

150155

IV. CASE STUDY

In our case study, we examined the link between
testability and fault proneness in Apache HTTP Server,
otherwise known as “httpd” or simply “Apache.” We also
examined the quality of testability as a fault proneness
predictor in terms of recall and precision. To our knowledge,
no one has studied fault proneness on a per-line basis, so for
comparison, we also compared two other metrics: McCabe
cyclomatic complexity and random.

Apache is a well-known open-source HTTP server
written entirely in C. Its licensing allows many commercial
HTTP servers to reuse its code. We examined the Apache
“trunk” SVN revision history to conduct our case study.

A. Research Questions
This section states our hypotheses. We were interested in

two ideas: RQ1) how the testability of Fault Prone (FP) code
compared with Not Fault Prone (NFP) code, and RQ2) how
well our testability measure predicted the precise location of
faults.

1) Difference in means (RQ1)
Our null hypothesis (H0) states that there is no

difference between the mean testability of FP code and the
mean testability of NFP code. Our alternate hypotheses states
that there is a difference, either:

• H1 : FP code had lower testability than NFP
code (what we posit), or

• H2 : FP had higher testability than NFP code.
We reject the null hypothesis if the difference is

significant within 95% confidence (α=0.05). We accept
the null hypothesis only if we have at least 80% statistical
power (β=0.2) and the difference is not significant.

2) Recall and precision (RQ2)
To determine the quality of our predictions, we also

performed a traditional fault proneness experiment by
assessing the recall and precision of our estimates. We define
recall, precision, and the hybrid measure F1 as:

recall= true positives
true positives+false negatives (3)

precision= true positives
true positives+false positives (4)

F1=2⋅ precision⋅recall
precision+recall . (5)

Thus our null hypothesis is that there is no difference in
recall and precision between testability, McCabe cyclomatic
complexity, and random. Our alternate hypothesis is that
there is a difference (two-sided).

B. Procedure
We examined 43 random revisions modifying C code of

Apache trunk in the range [1082630,1377685]. We picked
43 based on a preliminary statistical power analysis for an
overall hypothesis test. We skipped revisions correcting
spelling mistakes in comments or Windows-specific code
(we could not cross-compile it on our Linux system). When
we picked revisions at random from the above range, we
noticed most of them changed the Apache “modules” as
opposed to the actual server. Historically, we observed the
proportion in Apache was more even. To reduce the potential
bias of using so many revisions to modules, we selected 22
revisions to the modules and 21 revisions to the server.

For each revision, we identified the C files changed by
that revision. For each changed C file, we ran our tool to
compute the testability of each source line. The testability
scores for the changed lines formed the FP data set. The
remaining scores went into the NFP data set.

To implement this procedure, we configured the SVN
diff to output an ed [14] script, an old but easy-to-parse form
of diff that gives the line numbers of changed and deleted
lines with respect to the original file's line numbers. We then
built the database for the original revision and queried the
database for the testability scores of the changed lines. To
handle added lines, we computed the testability of the added
lines in reverse: we updated to the next revision, recompiled
the database, and extracted the deleted line numbers in the
reverse SVN diff.

Testability returns a number in [0,1], but cyclomatic
complexity returns a positive integer; both metrics need
thresholds defining whether a line is FP or NFP. To set
thresholds in a “fair” way, we computed 11 percent ranks in
[0,1], incrementing 0.1 every time. For each rank, we
computed the corresponding testability and McCabe
cyclomatic complexity. We used the values as our FP/NFP
thresholds.

We also plotted the recall and precision from randomly
ranking blocks. In theory, the recall of random choices
should scale linearly from 0 to 1, while the precision of
random should remain roughly flat at the overall FP sample
proportion. On the graphs of recall, precision, and F1,
methods that are better than random will be superlinear
(above random) while methods that are worse than random
will be sublinear (below random).

C. Results
This section discusses the results of the comparison of

testability means as well as the recall and precision.

TABLE I. APACHE SUMMARY STATISTICS

Measure FP NFP

Basic blocks 341 22638

Mean 0.34 0.31

Variance 0.10 0.12

151156

1) Difference in means (RQ1)
Table I summarizes the files present in the 43 revisions.

As Table I shows, only about ~1.5% of basic blocks changed
over the 43 revisions. The FP code, on average, had higher
testability than the NFP code. In other words: developers
found faults in easy-to-test code, supporting H2 . The data
was not normally distributed, so to determine the
significance of the difference in the means, we used the
ranksum test in Matlab corresponding to the Mann-
Whitney U-test nonparametric comparison of means.

Table II gives the results of the test. As Table II shows,
the difference in the means was significantly different and
exceeded our confidence threshold of 95%. The effect size,
Cohen's d, (the difference between means normalized by a
standard deviation) was only 0.06, but the difference was
still significant because the data was not normally
distributed. Thus we reject H0 in favor of H2 .

To perform finer-grained testing, we applied k-means to
cluster the blocks into three testability groups: low, medium,
and high testability. Within each cluster, we again partitioned
the blocks into FP and NFP sub-clusters and repeated our
analysis. We applied the t-test to compare the FP and NFP
sub-clusters. Table III summarizes our results. Within the
“Low” testability cluster, the FP blocks had significantly
higher testability that the NFP blocks. The effect size was
moderate at 0.6428. Thus the trend of developers finding

bugs in easy-to-test code was actually strongest in the Low
group.

The medium and high testability clusters are
inconclusive. The corresponding p-values in Table III lead us
to not reject H0 . However, the statistical power is too low to
actually accept H0 . Increasing statistical power is tricky
because it is impeded by unequal sample proportions. While
we could have easily looked at more revisions, we cannot
convince the Apache developers to change more lines of
code per revision.

2) Recall and precision (RQ2)
Figures 3, 4, and 5 show the recall, precision, and F1 of

predicting the precise location of faults using the same 43
revisions from the first part of the study. The “Random-”
plots show the effects of picking the stated percent of blocks
at random. The “Testability-” plots show the effects of using
the percent rank of the testability scores as an upper bound
threshold. The “McCabe-” plots similarly show the effects of
using the percent ranks of the cyclomatic complexity as a
lower bound threshold (we order this series in reverse for
comparison).

As Fig. 3 shows, testability was not significantly
different than random at recall. According to a matched pair
t-test, the p-value was 0.16. McCabe had significantly worse
recall than testability (p-value 0.04) and random (0.01).

As Fig. 4 shows, testability did not have significantly
different precision than McCabe (p-value 0.49) despite
appearing slightly higher. Both metrics had significantly

Fig. 3. Recall of testability, cyclomatic complexity, and random

TABLE II. RESULTS OF U-TEST BETWEEN FP AND NFP GROUPS

Measure Value

p-value 1.35∗10−6

Effect size (Cohen's d) 0.06

TABLE III. RESULTS OF 3-MEANS CLUSTERING

Measure Low Medium High

Blocks (FP) 209 72 60

Blocks (NFP) 14157 4139 4342

Mean 0.0780 0.4487 0.9462

Mean (FP) 0.1215 0.4586 0.9394

Mean (NFP) 0.0772 0.4486 0.9463

Variance (FP) 0.0048 0.0130 0.0073

Variance (NFP) 0.0048 0.0161 0.0081

p-value 4∗10−17 0.4611 0.3336

Effect size d 0.6428 0.0788 0.1204

Statistical power 100.00% 9% 15%

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Random-recall
McCabe-recall
Testability-recall

Percent rank

R
ec

al
l

Fig. 4. Precision of testability, cyclomatic complexity, and random

0% 20% 40% 60% 80% 100%
0.0%

0.5%

1.0%

1.5%

2.0%

Random-precision
McCabe-precision
Testability-precision

Percent rank

P
re

ci
si

on

Fig. 5. F1 of testability, cyclomatic complexity, and random

0% 20% 40% 60% 80% 100%
0

0.01
0.01
0.02
0.02
0.03
0.03
0.04

Random-F1
McCabe F1
Testability-F1

Percent rank

F1

152157

worse precision than random (p-values 0.048 and 0.006,
respectively).

As Fig. 5 shows, testability did not have significantly
higher F1 than McCabe (p-value 0.15), but had significantly
worse F1 than random (p-value 0.04). McCabe was also
significantly worse than random (p-value 0.03). The F1 for
both methods peaked at the 80% percent rank. This rank
corresponds to a cyclomatic complexity of 10 or more,
which was McCabe's rule of thumb [4]. The testability at the
80% rank is 0.66, suggesting a rule of thumb that code with
testability less than 0.66 needs testing.

In absolute terms, the precision of all methods examined
was atrocious. Although testability significantly improved
recall over McCabe, neither method was especially precise.
This point leads into our threats to validity.

D. Threats to validity
In terms of content validity, we did not study all

revisions. While we could have studied more revisions, we
could not study all past revisions because the older revisions
require significant system modification to compile. This
factor artificially caps the precision of random. Even if we
could compile all revisions, the data would still be
incomplete for the usual reason: the false positive code could
indeed have faults that have yet to be discovered. Thus the
true precision of the methods could be understated.
Mitigating this threat is the fact that the data still supported
McCabe's rule of thumb.

In terms of internal validity, there could be selection bias
from using recent revisions. We tried to mitigate selection
bias by being random, but a random selection across a longer
time period would have been better. As said above, we could
not compile very old revisions. Also, we did not model all
possible effects on testability, for instance the effects of
specific files or effects of the modules and server directories;
we treated these as random effects.

In terms of external validity, we only studied Apache.
While Apache is a very “real world” project, it could be that
other projects, such as Eclipse, display different trends
regarding testability and cyclomatic complexity. Hata et al.
note that fault proneness metrics tend to perform especially
well on Eclipse [3], so our results might not be directly
comparable with Eclipse papers.

V. CONCLUSION AND FUTURE WORK

We examined recent revisions in the Apache SVN log
and found, to our surprise, that developers had a tendency to
find bugs in easy-to-test code. The more complicated the
code became, the more evident the pattern became. This
result went against our posited hypothesis that developers
find bugs in hard-to-test code.

In Apache, we found the recall of testability as a fault-
proneness predictor was significantly better than McCabe
cyclomatic complexity when applied on a per-line basis. We
found evidence confirming McCabe's “10-or-more” rule of

thumb for deciding what code to test. We introduced our
own rule of thumb: lines with testability 0.66 or less need to
be tested.

Our challenge to the fault proneness community is to use
fault proneness metrics to make specific code improvement
recommendations. We hope that such recommendations will
help practitioners improve fault-prone code and thus simplify
their testing efforts. We discussed one possible approach:
using a line-specific fault proneness metric to automatically
refactor fault-prone lines out of complicated functions. We
constructed testability with this approach in mind. The
current function-level metrics we see in fault proneness
studies, such as McCabe cyclomatic complexity, do not
suffice for our purposes.

ACKNOWLEDGMENT

We would like to thank Nan Li and Dr. Jeff Offutt for
providing us with the latest version of their Graph Coverage
tool.

REFERENCES

[1] G. Denaro, “Estimating software fault-proneness for tuning testing
activities,” in Proceedings of the 22nd international conference on
Software engineering, Limerick, Ireland, 2000, pp. 704–706.

[2] “10 Dollars Bug Fix on Dilbert.com.” [Online]. Available:
http://search.dilbert.com/comic/10%20Dollars%20Bug%20Fix.
[Accessed: 10-Sep-2012].

[3] H. Hata, O. Mizuno, and T. Kikuno, “An extension of fault-prone
filtering using precise training and a dynamic threshold,” in
Proceedings of the 2008 international working conference on Mining
software repositories, Leipzig, Germany, 2008, pp. 89–98.

[4] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[5] J. M. Voas, “PIE: a dynamic failure-based technique,” IEEE
Transactions on Software Engineering, vol. 18, pp. 717–727, Aug.
1992.

[6] R. S. Freedman, “Testability of software components,” IEEE
Transactions on Software Engineering, vol. 17, no. 6, pp. 553–564,
Jun. 1991.

[7] N. Li, F. Li, and J. Offutt, “Better Algorithms to Minimize the Cost of
Test Paths,” presented at the Fifth IEEE International Conference on
Software Testing, Verification and Validation, Montreal Canada,
2012.

[8] “Java Path Finder.” [Online]. Available:
http://babelfish.arc.nasa.gov/trac/jpf. [Accessed: 22-Jan-2012].

[9] “Home | Graphviz - Graph Visualization Software.” [Online].
Available: http://www.graphviz.org/. [Accessed: 29-Mar-2011].

[10] “GCC, the GNU Compiler Collection - GNU Project - Free Software
Foundation (FSF).” [Online]. Available: http://gcc.gnu.org/.
[Accessed: 10-Sep-2012].

[11] “SSA for Trees - GNU Project - Free Software Foundation (FSF).”
[Online]. Available: http://gcc.gnu.org/projects/tree-ssa/. [Accessed:
10-Sep-2012].

[12] “The GNU Awk User’s Guide.” [Online]. Available:
http://www.gnu.org/software/gawk/manual/gawk.html. [Accessed:
10-Sep-2012].

[13] “gcc(1): GNU project C/C++ compiler - Linux man page.” [Online].
Available: http://linux.die.net/man/1/gcc. [Accessed: 10-Sep-2012].

[14] “ed - GNU Project - Free Software Foundation (FSF).” [Online].
Available: http://www.gnu.org/software/ed/. [Accessed: 13-Sep-
2012].

153158

