
SOFTWARE TESTING, VERIFICATION ANDRELIABILITY
Softw. Test. Verif. Reliab. (2010)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr.426

Improved code defect detection with fault links

Jane Huffman Hayes1,∗,†, Inies R. Chemannoor2 and E. Ashlee Holbrook3

1Department of Computer Science, University of Kentucky, Lexington, KY 40506, U.S.A.
2Intel, Santa Clara, CA 95051, U.S.A.
3Lexmark, Lexington, KY 40506, U.S.A.

SUMMARY

Fault links represent relationships between the types of code faults, or defects, and the types of components
in which faults are detected. For example, our prior work validated that a fault link exists between
Controller components and Control/Logic faults (such as unreachable code). Fault link information can
guide code reviews, walkthroughs, testing, maintenance, and can advise fault seeding. In this paper, we use
fault links to augment code reviews. Two experiments were undertaken to evaluate the usefulness of fault
links, one with 26 Computer Science students and another with 24 software engineering professionals.
The first experiment showed that fault link information assisted in finding more total defects and more
‘hard to detect’ defects, in the same amount of time, in a Java component of an online course management
application. The experiment was repeated with professionals, adding a second Java component from the
same application. For the second experiment, more total defects were found by the participants using
fault link information for one of the two components and more hard to detect defects were found, in
the same amount of time, in both Java components. The group using fault link information for code
walkthroughs found, on average, 1.7–2 times more faults and 2–3 times more hard faults than the control
group. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Widespread virus attacks, growing daily reliance, software incompatibilities, system and software
hacking, and competition between software firms all serve to increase the demand for high quality,
reliable software. Some reasons that software companies fail to produce quality products are
the lack of resources to ensure the software quality (time, money, tools, etc.) and the lack of
knowledge regarding the timely use of resources. Fault-based analysis (FBA) [1] seeks to address
these problems by applying techniques early in the life cycle, using information about the historical
occurrence of pre-specified fault types to drive the selection of the verification and validation
(V&V) techniques. A fault taxonomy is an important requirement for applying FBA.
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Our semantic fault model work [2], our work on input validation testing [3], Offutt’s work on
testing coupling effect [4], our work on traceability [5, 6], and our work on requirement faults [1] led
us to a conjecture about faults: the types of mistakes made by programmers are largely dependent
on the type of module that is being developed or modified. We refer to this relationship as a fault
link that is part of a larger relationship or sequence called a fault chain. The term fault chain
refers to a relationship that exists between faults that have occurred during different phases of the
software development life cycle. For example, a fault that results in unnecessary processing that
is caught during software testing may be traced back to an ambiguous requirement that existed in
the requirements specification. A fault chain also exists when faults are repaired and new faults
are introduced as a result of the repair actions.

Our prior work established the existence of fault links for a specific domain [7]. Here, we focus
on using the knowledge of fault links to improve the Verification and Validation (V&V) activities,
such as code inspections. It may seem intuitive that fault link knowledge will assist with quality
assurance activities, but empirical validation is required. The need for experiments in software
engineering is evident [8]. New technologies and changes in the software process require testing
before adoption, in order to determine their impact in the specific context and domain [9].

We posit that current software development and V&V practices improve with the knowledge
of fault links by allocating quality assurance resources to the most probable component type/fault
type pairs for the domain. We provide a customized design and a code walkthrough checklist for
new developments (based on fault links) and recommend that customized exit criteria be added
to walkthrough checklists for maintained design or code. In addition, we can offer guidance to
testing and reliability researchers who rely on fault seeding as a technique evaluation mechanism.
As pointed out by Offutt and Hayes [2], researchers tend to seed syntactically small faults, faults
that only affect the program execution negatively for a small number of variable values. Through
our fault link research, we gain deeper insight into true distributions of fault types and understand
which types of faults researchers should be seeding based on the component type. The contribution
of this paper is several-fold: (a) we use fault links to augment the code review process and (b) we
empirically evaluate the application of fault links in two code reviews, one with students and the
other with professionals.

In this paper, we examine fault links for the online course management software domain. We
then undertake two experiments to examine the effectiveness of fault link information-enhanced
inspections. The remainder of the paper is organized as follows. Fault links are presented in
Section 2. Section 3 describes the experiments. The results are presented in Section 4. The related
work is presented in Section 5. Section 6 is devoted to conclusions and future work.

2. FAULT LINKS AND APPLICATIONS

This section discusses fault links and how they are applied to assist with code walkthroughs.

2.1. Fault links

A number of definitions are in order. A component can be a single statement or a single func-
tion or procedure that contributes to the purpose of a software program [10, 11]. According to
the Merriam Webster’s dictionary, taxonomy is ‘the study of the general principles of scientific
classification [12]’. We define taxonomies for faults and for components as follows:

• Generic code-fault taxonomy: A fault taxonomy that can be used to classify faults that occur
in any domain or project.

• Generic component taxonomy: A component taxonomy that can be used to classify components
that occur in any domain or project.

We work with both of the above. The generic taxonomies have been obtained through an
extensive literature survey and also by categorizing defects on two projects. Defect reports for
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Figure 1. Subset of Code fault and component type taxonomy definitions.

the Apache Web Server (Version 1.23.x) and the Mozilla Web Browser (Version 3.23.x) were
examined [7]. Subsets of the generic component taxonomy and the generic fault taxonomy, referred
to hereafter as merely the component and fault taxonomy, are shown in Figure 1‡.

We followed a subset of the steps presented by Huffman Hayes [1] and developed a domain-
specific component taxonomy and a domain-specific fault taxonomy: select a fault taxonomy as a
basis for the work, examine sample code faults, adopt or build a method for extending the fault
taxonomy, and implement the method for tailoring the taxonomy. Each is discussed below.

2.1.1. Component taxonomy. Any program, be it simple or complex, can be viewed as a component
or a combination of components. Each component serves a unique purpose. Note that we use
the terms ‘module’ and ‘component’ interchangeably. For the online course management software
domain, we identified eight component types: data-centric, computational-centric, controller, view,
interaction, utility, error handling, and environmental setup/configuration.We endeavoured to make
the component taxonomy language-independent and method-independent (i.e., procedural, object-
oriented, component-based, etc.). This same goal applied when we developed the fault taxonomy,
discussed next.

2.1.2. Code fault taxonomy. The code fault taxonomy is shown in Figure 2. The branches
of the tree represent fault categories that are language-independent, but the leaves may be
language-dependent. For example, the control/logic fault type applies to any language, but
register reuse is only applicable to languages such as C. The taxonomy was built using only bug
reports and source code. It does not require that specifications are available for review. The fault
types in the taxonomy are significant and have been shown to be important fault types in the
past [10, 14–20].

‡Complete taxonomies can be found in the work of Chemannoor [13].
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Figure 2. Generic Code Fault Taxonomy.

2.1.3. Fault links. We examined a number of hypothesized fault links for the online course
management software domain [7]. We found evidence of a number of fault links, listed below.
The first column provides the abbreviation of the conjectured fault link, for example, IFVC
stands for Interface Faults occur in View Components. The second column describes the conjec-
tured fault link, and the final column indicates if evidence was found to indicate that the fault
link exists. Note that there was only weak support for two of the fault links (DCDF and
VCUIF).
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Conjecture Conjectured Fault Link Supported?

DCDF Data components (DC) have Data faults (DF) Weak
DFDC Data faults occur in Data components No
CCCLF Controller components (CC) have C/L faults (CLF) Yes
VCUIF View components (VC) have User Interface faults (UIF) Weak
UIFVC User Interface faults occur in View components Yes
UCCLF Utility components (UC) have C/L faults Yes
IFVC Interface faults (IF) occur in View components Yes
PFVC Platform faults (PF) occur in View components Yes

We also discovered these fault links that had not been hypothesized, shown below.

Discovered Fault Link

Data components have C/L faults (DCCLF)
Computational components have C/L faults (CCCLF)
Computational faults occur in Controller components (CFCC)
Data faults occur in View components (DFVC)
Utility components have C/L faults (UCCLF)

In total, 10 fault links were found to be strongly supported by the empirical study of Hayes et al.
[7], and two were weakly supported. The full details of the determination of these fault links can
be found in the work by Huffman Hayes et al. [7] and by Chemannoor [21]. These details have
not been included here due to space considerations.

2.2. Applications

Although our method establishes component–fault relationships that can be used in different
phases of the software development life cycle, we focus on applying fault links to detect defects
during code inspections or walkthroughs. With information about the fault links, one need only
know the type of component being reviewed in order to build a tailored, more effective check-
list. For example, if one is reviewing a Utility component, one knows that these tend to have
control/logic faults. Items can be added to the checklist such as: ‘Are the loop exit conditions
checked accurately?’ or ‘Are any control/logic statements missing?’ Tailoring a checklist in this
manner results in adding checks that may not have otherwise been performed, or that may have
seemed ‘generic’ previously (but are now known to particularly apply based on the component
type).

A typical checklist (control) is shown in Appendix B. Note that most of the items in the
checklist are very general in nature. A checklist for a Controller component (experimental) is
shown in Appendix A. In the online course management software domain, these components
typically have many control/logic faults and data faults, with fewer computation faults, User
Interface faults, and platform faults. Hence, the checklist has been so tailored (it includes a
description of the typical fault links based on component type, a definition of the fault types, as
well as tailored checklist questions). This approach has some similarity to searching for common
programmer mistakes when performing reviews. However, the ‘common mistakes’ for which
our method searches have been determined based on the component type and on the software
domain.

Many of the items are common between the checklist in Appendixes A and B. The few items
that are unique to Appendix A have been highlighted with a border (the legend in Appendix A
indicates that these are unique items).
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3. EXPERIMENTAL VALIDATION

In order to evaluate the usefulness of fault links, we conducted two experiments, one with graduate
students and the other with professional software engineers. In both experiments, the subjects
performed inspections of source code components using walkthrough checklists. In designing and
performing the validation, we followed the guidelines for experimentation found in Wohlin et al.
[22] augmented by guidelines on case studies for method evaluation posited by Kitchenham et al.
[23]. The research questions investigated in both experiments were:

RQ1: Does the knowledge of fault links for a domain make the code inspection process more
effective?
RQ2: Does the knowledge of fault links for a domain assist in detecting ‘hard to find’ defects
(called ‘hard faults’)?

The planning and operation of the first experiment follows.

3.1. Experiment one (students)

The subjects, variables, hypotheses, artifacts, experimental design, and threats to validity are
presented below.

3.1.1. Subjects. The subjects were upper division undergraduate Computer Science students
enrolled in the capstone Senior Design course at the University of Kentucky (UK). During the
semester, the students were instructed in a spectrum of code inspection techniques, ranging from
informal reviews to walkthroughs, inspections, and formal technical reviews. They had sufficient
knowledge and experience in order to carry out the experiment. There were two groups of code
inspectors and two supervisors. Furthermore, within both groups, the members were divided
into two-member teams. The groups were formed randomly by using a PERL tool developed at
UK called the groupgenerator [24]. The groupgenerator program accepts as input a text file that
contains the names of all the participants. Using the time as a seed, the groupgenerator randomly
places the participants into different groups and, finally, writes the grouped names into an output
file.

3.1.2. Variables. The independent and dependent variables are defined for the experiment.

• Independent Variable is the inspection technique used. The technique either utilized a checklist
that was enhanced with the fault link information or a checklist that did not include the fault
link information.

• As the time for the inspection was constant for all participants, the Dependent Variables
measured are the faults detected. Specifically:

◦ Number of faults found in the component.
◦ Number of ‘hard faults’ found in the component.

3.1.3. Hypotheses. The null hypotheses for the first experiment are from the code inspector’s
perspective and address the effectiveness of fault link information-enhanced inspections in finding
faults in a code component.

• Hrate: There is no difference in the rate of faults found between the inspectors utilizing the
fault link information-enhanced checklists and the inspectors not utilizing such checklists.

• Hratehard: There is no difference in the rate of ‘hard faults’ found between the inspectors
utilizing the fault link information-enhanced checklists and the inspectors not utilizing such
checklists.

3.1.4. Artifacts. The artifacts for the first experiment are briefly described below.
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3.1.4.1. Code component. We chose a component from the Electronic Personal Organic Chem-
istry Homework (EPOCH) project for the student experiment. The system is an online homework
management program and serves as a teaching aid in an organic chemistry course at UK [25].
EPOCH attempts to give students the feedback for wrong answers, thus enabling them to arrive
at the correct answer. In addition to the homework program, EPOCH consists of an authoring
tool to create problems and an instructor tool to assemble assignments. EPOCH is implemented
using various programming languages, including Java, PERL, JSP, HTML, and PROLOG. The
component (GradeStore) was chosen because it could be reasonably inspected within the available
time. GradeStore is 177 lines of code (LOC), highly representative of the size of components
found in large industrial applications: Zhang and Tan found that ‘the average (mean) size of
Java class regardless of the nature of the systems is about 114 LOC [26].’ Using our component
taxonomy (Section 2), the component was categorized as a data-centric component. The fault links
data derived from the EPOCH project indicate that a data-centric component historically has 60%
control/logic faults and 40% data faults. Using this information, analyses of EPOCH bug reports
(for re-seeding previously repaired faults), and help from the developer of the EPOCH project,
we seeded faults into the chosen component: 10 control/logic faults (60%) and six data faults
(40%). We re-seeded as many ‘naturally occurring’ faults as possible (those that had previously
been found and repaired), and all other faults seeded were from the collection of faults analysed
as part of the fault link work [7].

3.1.4.2. Documents. The documents that were common between the control and experimental
groups were: component source code (line numbered, including blank lines and comments), compo-
nent type definition, fault taxonomy definitions and criteria, generic checklist, fault report sheet,
and questionnaire§ . The source code component was seeded with faults prior to the experiment,
as discussed above. The fault taxonomy definitions and criteria aid the inspectors in categorizing
the faults detected during inspection. The generic checklist contains a list of questions related to
issues commonly present in code components. The inspectors used the fault report sheet to provide
a description of the discovered faults. The questionnaire was used to obtain feedback from the
participants after the inspection process, such as on the usefulness and correctness of the distributed
documents.

Besides the above-mentioned documents, the experimental group received some additional docu-
ments, including a tailored checklist and the component taxonomy definition. The tailored checklist
was constructed specifically for data-centric components, utilizing knowledge of the fault links
between data-centric components and control/logic and data faults [7]. For example, the tailored
checklist item ‘Are the variables used in the IF statements correct?’ assists the inspectors to ensure
the correctness of the IF constructs (i.e., a control/logic statement) in the code. The component
taxonomy definitions aid the participants in understanding the main purpose of the component to
be inspected.

3.1.4.3. Fault classification. We categorized the seeded faults as easy, medium, or hard to detect
based on our experience with the Java language (used in EPOCH) and with the code inspection
process, and using previous classifications developed in prior work [27]. A code fault taxonomy
developed by the U.S. Nuclear Regulatory Commission and Electric Power Research Institute
tagged certain code faults as ‘hard to detect’ (not obvious upon inspection, subtle, etc.). Faults
noted as ‘hard faults’ in the work by Miller et al. [27] have thus been classified as hard to detect in
this work. The code component inspected, GradeStore, contains seven hard faults, three medium
faults, and six easy faults.

3.1.5. Design. There were 26 participants (i.e., students), randomly assigned to the control group
(14) and to the experimental group (12). The groups were further divided into teams, so that the
control and the experimental group had seven and six two-member teams, respectively. During the

§All artifacts may be found in Chemannoor [13].
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inspection process, every member of a group was restricted to communicating only with his/her
team partner. No other restrictions were placed on the two-person teams, they were permitted
to work together as they saw fit. Two supervisors were available (one for each group) to aid
the inspectors with timely clarification of questions or issues. The members of both groups were
provided with materials as described above. The format and content of all the materials followed
the current industrial standards.

The collected data were descriptively and statistically analysed. A normal distribution was
present in the experiment data (per visual examination of a histogram of the residuals) as well as
equal variances, hence the student’s t-test was used to analyse the performance of the two groups.

3.1.6. Threats to validity. In this section, we address the threats to conclusion, internal, construct,
and external validity [22]. To reduce the threats to conclusion validity, we ensured that all assump-
tions were met for the applied statistical tests. There were minimal threats to internal validity. There
was limited social threat: there was no compensation for participation; and grades were assigned
based on the participation, and not on the performance in the experiment. In other words, there
was nothing that the participants had to gain from the outcome of the experiment. The experiment
was a mandatory part of the course; so, this minimizes the selection threat. The use of random
assignment to groups is a known method for reducing the selection bias. For example, Kunz
et al. found that not using randomized selection resulted in an overestimation of the study effects
[28]. Also, the Preliminary Guidelines for Empirical Research in Software Engineering state that
‘Subject/objects should be allocated to treatments in an unbiased manner or the experiment will
be compromised. It is customary to allocate subjects/objects to treatments by randomization [29].’
To reduce the threats to construct validity, we used the standard measures of effectiveness. We
administered a questionnaire after the experiment to help validate the results. Also, we used an
open-source checklist to ensure that the industry standards were applied for the code inspection.

External validity was reduced due to the use of students. However, Tichy stated that using
students is acceptable as long as they have been trained adequately and as long as the data are
used to test initial hypotheses prior to the experiments with professionals [30]. Also, the students
were taking the capstone course during their final year, and were close to starting their careers in
industry. None of the students were familiar with the domain, so we did not block on domain. We
cannot generalize the results to other application domains, systems, or languages. The experiment
is based on a theory about a fault link taxonomy based on existing knowledge and empirical
studies. New fault links may be found, and, of course, some applications may not have certain
faults. The researchers seeded faults in proportion to the fault links for specific component types.
‘Naturally occurring’ faults were used, where possible, to minimize any bias. For example, faults
found previously in EPOCH were re-introduced. Also, faults discovered by Apache and Mozilla
developers and users were seeded (from the work done by Hayes et al. [7]). It is not uncommon
for researchers to present a new method or technique that is based on a particular idea and then
seed faults into real components to evaluate the effectiveness of the method. This approach has
been used in many testing papers and reading technique papers. Other code inspection researchers
have seeded their modules with one fault for every 20–27 LOC [31]. Our defect density is higher
than that (one fault every 11 LOC), but our density was driven by the faults that had actually been
found in the module previously by the developer, also a common practice in the literature. This
experiment was used as a pilot experiment for a follow-up experiment with professionals.

3.1.7. Experiment operation. Days before the actual inspection, all the students were provided with
materials to help them understand the piece of code that they would be inspecting. The materials
distributed were: a component description and a tutorial of programming languages (esp., Java and
SQL) briefly describing the concepts necessary for understanding the component. In addition to
the above two items, the students were also provided with a questionnaire, which was completed
by the students before the code inspection. The questionnaire was used to screen students and to
remove any students without the basic skills necessary to complete the inspection.
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The code inspectors were informed in advance and at the beginning of the experiment about the
time allotted for the inspection process. The total time allotted for the inspection was 75minutes.
Note that this is well within the industry practice where 100–200 LOC are typically reviewed in one
hour [32, 33]. On the day of the experiment, the supervisors distributed the necessary documents
to help the inspectors carry out the inspection process. The experiment began on time and went
smoothly during the allotted time frame. At the end of the process, the supervisors promptly
collected the fault report sheet and questionnaire.

3.2. Experiment two (professionals)

The subjects, variables, hypotheses, artifacts, experimental design, and threats to validity for the
second experiment are presented below.

3.2.1. Subjects. The subjects were professional software engineers at numerous companies,
recruited using convenience sampling. A questionnaire was completed by each participant prior
to the experiment. This questionnaire helped determine the participant’s experience with code
inspection, with the domain, and assisted us in evaluating their understanding of the required
programming language concepts. In order to ensure that any bias that existed was in favour of the
control method, those most experienced with code inspections were placed in the control group.

Based on the information in the questionnaires, a profile of the subjects is shown in Table I.
Column one provides the participant identifier and group (experimental group member identifiers
are lettered A1 through A12 and control group member identifiers are lettered B1 through B12).
Those who completed the project had, on average, 7.03 years of software engineering experience,
2.7 years of code walkthrough experience, and 2.8 years of Java experience. The control group had,
on average, 8.18 years of software engineering experience, 4.2 years of code inspection experience,
and 3.5 years of Java experience. The experimental group had 5.79 years of software engineering
experience, 1.25 years of code inspection experience, and 2.13 years of Java experience.

3.2.2. Variables. The independent and dependent variables for the second experiment are identical
to those of the first experiment.

3.2.3. Hypotheses. The hypotheses for the second experiment are from the inspector’s perspective
and address the effectiveness of fault link information-enhanced inspections in finding faults in a
code component. They are identical to those of the first experiment.

3.2.4. Artifacts. The artifacts from the first experiment were used for the second experiment also.
The artifacts differed only in that some minor changes to the formatting were made based on
the suggestions collected during the pilot experiment (such as providing larger spaces for writing
comments on the fault collection sheet). In addition, a second code component was introduced for
review (to ensure that there was not a component effect). A description of this component was
provided to the participants. The second component, HWCreateSession, is a controller component,
also from EPOCH. HWCreateSession is 188 LOC, representative of the size of components found
in industry [26]. Historically, these components have 45% control/logic faults, 27% data faults,
9% computation faults, 9% User Interface faults, and 9% platform faults in the online course
management software domain. Again, using the previously repaired faults and faults from the fault
link work [7], we seeded 13 defects: 6 control/logic, 4 data, 1 computation, 1 User Interface, and
1 platform fault. Of these, 10 were classified as hard to find [27]. Appendix D provides the details
on these faults: the fault type, which are hard to find, and which participants found the faults.

3.2.5. Design. There were 29 participants, of which 24 completed the experiment. There were
12 participants assigned to the control group and 12 assigned to the experimental group, as
explained above. Two supervisors were available (one for each group) to aid the participants with
timely answers to the questions. During the inspection process, every participant was restricted
to communicating only with his/her supervisor. The members of both groups were provided with
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materials as described above. The participants had 75minutes to review both components, and
were not given any specific order in which to review the components. We asked them to spend
half the time on each component. The instructions to the Control group are shown in Appendix C.
The Experimental group had identical instructions, but these two sentences replaced the sentence
beginning ‘use the Checklist.doc’: ‘first read the second page of the file Checklist.doc; then use that
information as well as the first page of Checklist.doc to guide your walkthrough of each module.’
The format and content of materials followed the current industrial standards. The collected data

Table I. Profile of Professional Participants.

Participant S/W Eng. Code walkthrough
ID-group Company experience experience Java experience Status

A12—exp. Rockwell 30 years Moderate amount Code reading only, Completed
self taught

A8—exp. SAIC 2 years None Developed Java and Completed
had 3 courses

B11—control Intsolutions 5 years 2–3 years None Completed
B9—control Perot Systems 18 years Significant 5 years Completed

experience in code
walkthroughs

A9—exp. SAIC 3 years College work only 2 years Completed
A10—exp. SAIC 5 years Never performed a 3 years Completed

formal code
walkthrough

A6—exp. Avnet 5 years Maybe 0.5 year 4 years Completed
experience

B8—control Lexmark 6 years 6 years, 4 years in 4 years, 2 in courses Completed
courses and 2 years and 2 in work
in work

B6—control Perot Systems 6 years Work experience, 6 years Completed
projects in latter
years strongly
emphasize code
walkthroughs

A7—exp IBM none Not much Not much Completed
B12—control Lexmark 4 years Experience through Through courses Completed

work
A5—exp Lexington, KY 6 months None Very little Completed

corporation
B2—control Rockwell 3 years Use it unofficially Several Completed

on a regular basis on programming
all projects projects over 3 years

B5—control SWIFT 9 years 7 years Through courses Completed
A4—exp IBM 5 years Only informally Only course work, Completed

a while ago
B7—control Lexington, KY 5 years One year experience 3.5 years Completed

corporation on each of two jobs
A1—exp Rockwell 3 years Only a few code About 2 years Completed

walkthroughs through courses
only

Participant 25 Exstream 3 years Experience from 2 years Dropped out
control work and courses,

3 years
B10—control Lexmark 12 years 8 years 8 years of work Completed

experience
A3—exp Perot Systems 5 years Some One class over Completed

6 years ago
B4—control Lexington, KY 2 years 1 year of many Work with it for Completed

corporation 8 months inspections 6 years (includes
courses)
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Table I. Continued.

Participant S/W Eng. Code walkthrough
ID-group Company experience experience Java experience Status

A2—exp U.K. 5 years as part 1 year from college 4 years as a Completed
time programmer classes research asst

Participant 26 Winchester, KY 1.5 year Some 1 year from Dropped out
exp corporation a class
Participant 27 Rockwell 10 years on Once or twice per None Dropped out
exp programmable year

logic controllers
B3—control Rockwell 20 years 3–4 times per Took courses Completed

month
Participant 28 Stroud Engineering 18 years Walkthroughs only Very limited Dropped out
exp Services, Inc. for a few more

complex projects
B1—control IBM 7.5 years Experience through 5 years Completed

work and courses
Participant 29 Lexington, KY 8 years 8 years 8 years Dropped out
control corporation
A11—exp ACS 6 years 3 years 3 years Completed

were descriptively and statistically analysed. A normal distribution was present in the experiment
data (per visual examination of a histogram of the residuals). The Bartlett test for the homogeneity
of variances had a resulting probability of p>0.05 indicating that the variances are homogeneous.
Also, Levene’s test for homogeneity of variances showed that the p statistic was not significant
at the 0.05 level, hence the variances are homogeneous. With the normality and homogeneity of
variances assumptions met, the t-test was used to analyse the performance of the two groups.

3.2.6. Threats to validity. In this section, we address the threats to conclusion, internal, construct,
and external validity [22]. The threats were the same as for experiment one except as noted here.
Concerning internal validity, there was limited social threat as there was no compensation for
participation. There is a selection threat and a history threat (unavoidable differences in the subjects’
experience). To reduce this, we placed the most experienced professionals in the control group
to bias against the fault link method. As a result of our quasi-experimental design, it is possible
that our subjects may not be representative and that there could be other confounding variables
that influenced the two groups [34]. There were two subjects from the same company (A12 and
B3) with 20 plus years of experience. The subject with the greatest amount of code reading and
Java experience was placed on the control team to bias against the fault link method (B3). The
subjects were instructed not to speak with anyone else during the experiment, but it is possible that
communications might have occurred. Also, there is a possible internal threat to validity regarding
the amount of time spent by the participants on the inspection. The professionals were asked to
monitor their own time and to work for 75minutes. It is possible that some participants worked
for more or less than 75minutes, though all reported that they had worked for 75minutes. Based
on the data from Jacob and Pillai [32] and a study by a Software Process Improvement Network
(SPIN) [33], professionals require roughly one hour to review up to 200 LOC. With the size of
the two components (subtracting 20% of the size which are content free lines), the time given for
the review should have been 87minutes versus 75minutes. However, the control and experimental
group were given the same amount of time. If anything, this biased the experiment in terms of
making it less likely that the professionals (in either group) had enough time to find as many
defects as possible.

We also suffered some attrition; five of the 29 participants did not complete the experiment.
There did not seem to be a pattern for the attrition except that all participants who dropped out
claimed that it was due to pressing work deadlines. Some dropouts work in Lexington, some work
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in Ohio, and some in Indiana. Some dropouts were in the experimental group, whereas some were
in the control group.

External validity threat was minimal as we used skilled professionals as the participants. None
of the professionals were familiar with the domain, so we did not block on domain. The majority
of the participants were from the Midwestern United States, but there were a few participants from
Canada and the west coast of the United States. We reduced the threat that there is a component
bias by using a second component from the system. There is still the possibility of a system bias,
though. We cannot generalize the results to other application domains, systems, or languages.
The discussion regarding the seeding of faults by the researchers in Section 3.1.6 also applies
here. The defect density was one fault for every 14.5 LOC. This experiment took advantage of
the lessons learned from the pilot experiment, and hence had reduced the threats to validity. In
addition, experimental reliability [23] was evident—the study was repeated with professionals and
had similar results.

3.2.7. Experiment operation. Days before the actual inspection, all professionals were provided
with materials, via e-mail, to help them understand the code components that they would be
inspecting. The same materials distributed for experiment one were distributed for this experiment,
along with a second code component and its description. The participants were informed in advance
and at the beginning of the experiment about the time allotted for the inspection process. The total
time allotted for the inspection was 75minutes. On the day of the experiment, the supervisors
emailed the necessary documents to the participants. The participants were permitted to complete
the experiment in their own work space and were on the honour system for the amount of time
used. All the participants reported back the actual time used, and all reported that they had worked
for 75minutes. Each participant returned (via fax or by emailing scanned artifacts) the fault report
sheet and the questionnaire to the supervisors.

3.3. Comparison of the experiments

To the extent possible, the same artifacts were used for both experiments. Minor corrections discov-
ered during the student experiment were made to the artifacts before the professional experiment.
Also, the professionals reviewed a second component. The second component was added to mini-
mize the possibility that the effects were component-specific. The student experiment had pairs of
students examining the code components versus individuals. This design was in keeping with our
project work in the class (projects undertaken by pairs and groups, not individuals).

4. EXPERIMENTAL RESULTS

This section presents the results of both experiments.

4.1. Experiment one (students)

In this section, the analysis of experiment one is presented. The analysis addresses the effectiveness
of fault detection for the GradeStore code component from EPOCH.

4.1.1. Results. The results from the code inspection are shown in Table II. The experimental group
is labeled ‘A’ and the teams within the group are labeled ‘A1,’ ‘A2,’ ‘A3,’ etc. Similarly, the control
group is labeled ‘B.’ As mentioned earlier, 16 faults were seeded into the GradeStore component.
Table II presents the number of faults found by every team within a group. For example, in
Group A, Team A3 found 12 of the 16 seeded faults. In Group B, Team B6 found 3 of the 16
seeded faults, etc.

The students’ t-test was used for statistical analysis of the results. Our null hypothesis for the
rate of faults found (Hrate) is that the number of faults found will not vary between the experimental
and control group. Our alternative hypothesis is that a statistically significant difference in the
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Table II. Number of Faults Found.

Groups Experimental Group (A) Control Group (B)

Teams A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 B7
Number of faults found 10 6 12 6 9 5 9 8 1 1 8 3 1
Number of faults seeded 16
Mean 8.00 4.43
95% confidence interval Lower bound 5.79 Lower bound 1.65
of mean Upper bound 10.2 Upper bound 7.2
Std. deviation 2.76 3.74
Std. error of mean 1.13 1.41

Table III. Number of Hard Faults Found.

Groups Experimental Group (A) Control Group (B)

Teams A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 B7
Number of hard faults found 6 4 8 4 5 4 5 5 0 1 5 2 0
Number of hard faults seeded 7
Mean 5.17 2.57
95% confidence interval Lower bound 3.9 Lower bound 0.81
of mean Upper bound 6.45 Upper bound 4.32
Std. deviation 1.60 2.37
Std. error of mean 0.65 0.93

number of faults found will exist between the experimental and control group. We will reject
the null in favour of the alternative when the probability that the observed results are due to
chance is 0.05 or less. The mean, confidence interval, standard deviation, and the standard error
of means were calculated for both groups and are shown in the table above. The p-value was
0.04, indicating that the results obtained were statistically significant (i.e., there is a significant
difference in the number of faults found between the groups). When fault links are used to assist
with code inspection, the mean number of faults found is 8.0 and its 95% confidence interval is
5.79–10.2.

The results for the hypothesis on the rate of hard faults found (Hratehard) are shown in Table III.
The experimental group found an average of 5.17 hard faults (standard deviation of 1.6) and the
control group found 2.57 (standard deviation of 2.37). The p-value for the rate of hard faults found
was 0.02, indicating that the results obtained were statistically significant and we can reject the
null hypothesis in favour of the alternative (i.e., there is a significant difference in the rate of hard
fault detection between the groups). When fault links are used to assist with code inspection, the
mean number of hard faults found is 5.17 and its 95% confidence interval is 3.9–6.45.

4.1.2. Discussion. No restrictions were placed on the teams as to how they worked together. The
supervisors did observe that all the teams used a similar format: both members looked for faults
and then discussed them with each other and turned in a record of joint work.

The results of the hypotheses are summarized below.

• Hrate: The fault link method found almost two times more faults than the generic inspection
checklists. The results were statistically significant.

• Hratehard: The fault link method found two times more hard faults than the generic checklists.
The results were statistically significant.

4.2. Experiment two (professionals)

In this section, the analysis of experiment two is presented. The analysis addresses the effectiveness
of fault detection for two code components from EPOCH.
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Table IV. Experiment Two—Number of Faults Found—Gradestore.

Number of Number of 95% confidence Std. Std. error
Groups Participants faults found faults seeded Mean interval of mean deviation of mean

Experimental A1 6 16 8.08 Lower 3.34 0.96
Group (A) bound 6.19

Upper
A2 14 bound 9.97
A3 1
A4 6
A5 7
A6 8
A7 11
A8 7
A9 11
A10 8
A11 7
A12 11

Control B1 4 4.00 Lower 2.76 0.80
Group (B) bound 2.43

Upper
bound 5.56

B2 3
B3 8
B4 6
B5 3
B6 0
B7 4
B8 8
B9 6
B10 5
B11 1
B12 0

4.2.1. Results. The results from the code inspection are shown in Table IV. For example, in Group
A, Participant A7 found 11 of the 16 seeded faults in GradeStore. In Group B, Participant B3
found 8 of the 16 seeded faults, etc.

The students’ t-test was used for statistical analysis of the results. Our null hypothesis for rate
of faults found (Hrate) is that the number of faults found will not vary between the experimental
and control group. Our alternative hypothesis is that a statistically significant difference in the
number of faults found will exist between the experimental and control group. We will reject the
null in favour of the alternative when the probability that the observed results are due to chance
is 0.05 or less. The mean, confidence interval, standard deviation, and the standard error of means
were calculated for both groups for the GradeStore component and are shown in Table IV. The
p-value was 0.0018, indicating that the results obtained were statistically significant. When fault
links are used to assist with code inspection, the mean number of faults found is 8.08 and its 95%
confidence interval is 6.19–9.97.

The mean, confidence level, standard deviation, and the standard error of means were calculated
for both groups for the HWCreateSession component and are shown in Table V. The p-value was
0.06, indicating that the results obtained were not quite significant.

The results for the hypothesis on the rate of hard faults found (Hratehard) for component Grade-
Store are shown in Table VI. The experimental group found an average of 5.17 hard faults (standard
deviation of 2.52) and the control group found 1.58 (standard deviation of 1.62). The p-value for
the rate of hard faults found was 0.0002, indicating that the results obtained were statistically signif-
icant and we can reject the null hypothesis in favour of the alternative. When fault links are used
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Table V. Experiment Two—Number of Faults Found—HWCreateSession.

# of # of 95% confidence Std.
faults faults interval Std. error of

Groups Participants found seeded Mean of mean deviation mean

Experimental Group (A) A1 3 13 3.67 Lower bound 2.45 2.15 0.62
Upper bound 4.88

A2 6
A3 0
A4 2
A5 5
A6 7
A7 3
A8 2
A9 5
A10 1
A11 5
A12 5

Control Group (B) B1 1 2.17 Lower bound 0.77 2.48 0.72
Upper bound 3.57

B2 2
B3 5
B4 8
B5 0
B6 0
B7 2
B8 3
B9 4
B10 0
B11 1
B12 0

to assist with code inspection, the mean number of hard faults found is 5.17 and its 95% confidence
interval is 3.74–6.6.

The results for the hypothesis on the rate of hard faults found (Hratehard) for componentHWCreate-
Session are shown inTableVII. The experimental group found an average of 2.33 hard faults (standard
deviation of 1.5) and the control group found 1.08 (standard deviation of 1.44). The p-value for the
rate of hard faults found was 0.02, indicating statistical significance and allowing us to reject the null
hypothesis in favour of the alternative. When fault links are used to assist with code inspection, the
mean number of hard faults found is 2.33 and its 95% confidence interval is 1.48–3.18.

4.2.2. Discussion. The results of the hypotheses are summarized below.

• Hrate: The fault link method was significantly more effective (found almost two times more
faults for GradeStore and 1.7 times more faults for HWCreateSession) at detecting faults
than generic inspection checklists. The GradeStore results were statistically significant, the
HWCreateSession results were not quite significant.

• Hratehard: The fault link method was significantly more effective (found two times more hard
faults for HWCreateSession and three times more for GradeStore) at detecting hard faults
than generic checklists. The results were statistically significant.

Let us examine the results in terms of the types of faults detected. We focus on the module that
was most difficult for participants (regardless of treatments), HWCreateSession. As can be seen
in Appendix D, there were 13 faults in the module: six were control/logic faults, four data faults,
one computation fault, one interface fault, and one platform fault. Looking at all participants,
regardless of the treatment, it can be seen that of the opportunities to find the control/logic faults
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Table VI. Experiment Two—Number of Hard Faults Found—GradeStore.

# of # of 95% confidence Std.
faults faults interval Std. error of

Groups Participants found seeded Mean of mean deviation mean

Experimental Group (A) A1 4 7 5.17 Lower bound 3.74 2.52 0.73
Upper bound 6.6

A2 11
A3 1
A4 5
A5 5
A6 4
A7 5
A8 4
A9 7
A10 4
A11 4
A12 8

Control Group (B) B1 2 1.58 Lower bound 0.77 1.62 0.47
Upper bound 3.57

B2 1
B3 5
B4 2
B5 0
B6 0
B7 1
B8 4
B9 2
B10 2
B11 0
B12 0

(each participant could have found all six), 13% were found; 27% of the four data faults; 40%
interface fault; 23% computation fault; and 18% platform fault.

As discussed in Section 2.2, the checklist used by the experimental participants was augmented
with items related to the fault links typical for the component type. There were seven items
added to the checklist (as can be seen in Appendix A). Of these seven items, two related to
control/logic faults (for example, one item says ‘Missing control/logic statements may cause
improper functioning of the component’), six related to data, and one related to computation
(note that one item related to data and computation and one related to control/logic and data).
The experimental participants found 18% of the control/logic faults, 34% of data faults, 54.4%
interface fault, 27.2% computation fault, and 27.2% platform fault. This can be compared with
the control participants who found half as many control/logic faults as the experimental team at
9%, found 20% of the data faults, found half as many interface faults as the experimental team at
27% (compared to 54.4%), were at 18% for the computation fault, and 9% for the platform fault.

It can also be observed from Appendix D that the faults marked as ‘hard’ by the experimenters
were indeed more rarely found than other faults. Of the 10 faults marked as hard, three could be
considered ‘very hard’ to find as less than 5% were found (three faults that could each be found
by 22 participants). Five of the 10 could be considered ‘hard’ to find as less than 23% were found.
This means that only 5–23% of the eight faults marked as hard were found. Only 27% of the two
remaining faults marked as hard were found. One fault was not marked as hard, yet only 18% of
the participants found it (a data fault). Having examined the faults and the checklists, let us now
examine the participants in detail.

We noted that subjects A12 and B3 were from the same company. They both found a significant
portion of the seeded faults (A12 found 11 faults and B3 found 8 faults in Gradestore; A12
found 5 faults and B3 found 5 faults in HWCreateSession). It is possible that communications
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Table VII. Experiment Two—Number of Hard Faults Found—HWCreateSession.

# of # of 95% confidence Std.
faults faults interval Std. error of

Groups Participants found seeded Mean of mean deviation mean

Experimental Group (A) A1 2 10 2.33 Lower bound 1.48 1.50 0.43
Upper bound 3.18

A2 4
A3 0
A4 1
A5 3
A6 4
A7 1
A8 1
A9 4
A10 1
A11 3
A12 4

Control Group (B) B1 0 1.08 Lower bound 0.26 1.44 0.42
Upper bound 1.89

B2 1
B3 3
B4 3
B5 0
B6 0
B7 1
B8 1
B9 4
B10 0
B11 0
B12 0

might have occurred or that the subjects found so many faults due to similar skills and
background.

There were a few of the participants (A3, A1, A10) who found far fewer faults in both components
than did their counterparts. An examination of the backgrounds of these participants indicates that
the software engineering experience and the experience with Java are similar to that of the overall
experimental group. The amount of experience with code walkthroughs, however, is much lower
for this subset of the experimental group and may explain their lower than average fault detection.

We examined the post-experiment surveys returned by the subjects (we received five from
experimental and two from control subjects). Two of the experimental subjects said that it was
a good session, that the session and the documents could not be improved, and that they found
the session to be a useful experience. One experimental subject commented that they got tired
near the end of the time limit and were losing concentration. One experimental subject found the
session fun and said he/she liked the challenge of a time limit in which to review both modules.
He/she found that the documents ‘sacrificed clarity for brevity’ but found the session useful and
had no suggestions on how to improve it. Another experimental subject agreed that the document
for HWCreateSession could have been clearer, but also said the session was ‘pretty interesting’
and useful. One experimental subject noted that GradeStore was very condensed and it would have
been nice to have some spacing added for readability, and also commented that they were very
out of practice on code reviews. One control subject said that they found Gradestore frustrating
and wondered if it would compile, but had no suggestions on how to improve the session or the
documents. One control subject stated that the session and documents could not be improved, but
noted that the two components were very dissimilar (one on a database query and one on setting
up a customer-defined data structure). The control subject also found the session to be a useful
experience.
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5. RELATED WORK

We present an abbreviated survey of the related work in four categories¶ : fault surveys (involving
research that only uses defects, faults, or errors), component/module surveys (involving research
that only uses software components), both component and fault surveys (involving research that
use both), and code inspection methods.

5.1. Fault surveys

Faults have traditionally been characterized syntactically [35–37], including: the position in the
program where faults occur [38], the software development phase that generated the faults [39, 40],
the testing technique that detected the faults [2], and the type of statement in which the faults
occur [41]. As part of a National Aeronautics and Space Administration (NASA) funded project,
Hayes [1] presents a requirements fault taxonomy and a methodology for requirement FBA. The
FBA technique provides guidelines to detect and/or prevent different classes of requirement faults.
Requirement faults from six NASA systems were examined to build a requirement fault taxonomy
specific to NASA. Processes to tailor the taxonomy to a specific class of projects (or domain)
or to a specific project were also presented and applied. The work differs from the current work
in that it concentrates on requirement faults and does not examine the relationships between
the component and fault types.

IBM’s Orthogonal Defect Classification [42] classifies faults based on programmer mental
mistakes. Defect type distribution is used to measure the progress of a product and demonstrates
the use of the defect trigger distribution to evaluate the effectiveness and completeness of the
verification process. However, ODC uses a high-level classification of the software defects and
does not address fault links.

Shooman and Bolsky [43] perform an experiment to collect basic information about software
errors. They focus on determining the nature and frequency of errors, whereas our work addresses
the component and fault types. They set out to perform a pilot study to investigate the error density
of modules (error density of a module is the percentage of the module’s total number of LOC
that contain errors) and to develop data on how to use the available debugging resources. Their
experimental results show that a large percentage of the errors were found by hand processing
(without the aid of computer testing techniques).

Lutz [44] analyses the root causes of requirement faults that lead to safety-related software
errors in a safety critical, embedded system by adopting the classification scheme proposed by
Nakajo and Kumis [45]. This classification scheme moves backwards in time from the apparent
software error to an analysis of the root cause. Lutz presents only a high-level classification for
both program and requirement faults, focusing only on embedded systems.

Ostrand and coworkers [46] quantitatively analyse the faults and failures of a major commercial
system and found observations identical to those made previously by Fenton and Ohlsson [47].
Fenton and Ohlsson provide evidence to substantiate that software systems developed under the
same environment result in similar fault densities, when tested in similar testing phases. Hamdioui
et al. [48], in an effort to aid test engineers in dealing with new dynamic fault classes, math-
ematically analyse the dynamic fault classes based on primitive fault concepts. Their study
emphasizes the dynamic memory-related faults whereas our work deals with the static run-time
faults.

Dehlinger and Lutz [49] introduce ‘product line software fault tree analysis’ to improve the
software quality, where a product line is defined as a set of systems that are developed from a
common set of core requirements and share a suite of common traits. Software Fault Tree Analysis
(SFTA) [49] is a technique for investigating causes that contribute to the potential hazards in
safety-critical applications. The SFTA technique has been adapted to product lines in order to

¶A comprehensive survey can be found in [13].
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derive reusable analysis assets for future systems within the existing product line. However, the
application of the method to an implemented software system is not evident, as it is for our
work.

Offutt and Alexander [50] study the characteristics of the program faults that occur in object-
oriented software to improve the testing techniques. They posit that a full understanding of these
characteristics is crucial to several research areas. The paper presents a model of the appearance
and realization of object-oriented faults and defines the specific categories of inheritance and
polymorphic faults. As opposed to our work, their fault categories relate only to object-oriented
software and concentrate only on inheritance and polymorphic faults. Offutt and Hayes [2], in order
to analyse the characteristics of program faults, propose a semantic model for fault categorization
based on the syntactic and semantic size of a fault. They believe that viewing faults through this
characterization can solve many problems faced by fault-based testing techniques. This work may
assist with future improvements to fault link checklists.

Xie and Engler [51] illustrate the importance and usefulness of redundant errors. They believe that
redundant errors are just as serious as other errors (termed hard errors). In order to experimentally
verify this idea, they develop and apply five redundant checkers on large open-source projects.
They show that redundant errors can assist in finding mistakes and omissions in specifications.
Although the study discovers new fault types, it is not as exhaustive and generic as the one presented
here.

5.2. Component/module surveys

Khoshgoftaar and Allen [11, 52, 53] classify a software module as either fault-prone or non-
fault-prone. They demonstrate how module-order models can be used for classification [52] and
compare them with statistical classification models [11]. Khoshgoshtaar and Allen [53] attempt
to control the overfitting problem that causes classification models [11] to miscalculate the fault-
proneness of a component. As compared with our work, the authors do not classify faults and
the module classification that they present is not as detailed as the work presented here. Ohlsson
et al. [54] model fault-proneness statistically over a series of four releases. The model includes
change measures at various levels of analysis, such as the number of defect fix reports attributed
to a module, an interaction measure of defect repairs that involve more than one module, etc.
Their analysis of case study data shows that fault-prone modules exhibit a higher system impact
(total number of changes to .c and .h files in a release per module) across releases. In addition to
examining the number of faults per module, our work examines the types of faults attributed to a
module that has also been categorized by type.

In a similar vein, Zhao and Hayes describe a method for categorizing components as easy to
change or not easy to change [55]. Bieman et al. [56] identify the change-proneness of C++ code
based on the intentional use or lack of use of patterns. They demonstrate that some patterns are more
change-prone based on different categories of maintenance (i.e., corrective versus enhancement).
However, they make no attempt to classify faults. Bieman et al. [57] also present findings that
suggest a strong relationship between the class size and the number of changes, with larger classes
changing more frequently. The investigators did not identify the type of change or fault in these
studies, however.

Damiani et al. [58] present a hierarchy-aware classification schema for object-oriented code.
The behavioural characteristics categorize the components, such as service-provided, algorithm-
employed, and data-needed. These characteristics can be constructed from the application models
or extracted semi-automatically from the class interfaces. This classification method is for object-
oriented software projects, whereas the research we present here is generic and can be applied to
both procedural and object-oriented software projects.

5.3. Component and fault surveys

Basili and Perricone [10] analyse the interaction between the frequency and distribution of errors
during software development, the maintenance of the developed software, and a number of
environmental factors such as the complexity of software. The paper defines a module as a named
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subfunction, subroutine, or the main program. The authors classify a module either as modified
or new (developed specifically for the software project under analysis). The module classification
is high level as compared with the one presented here. The authors also classify software errors
into five categories, some of which we use in our work. The research of Ohlsson et al. [54],
described above and compared with our work above, is the motivation for the construction of
a fault architecture [47], determining fault coupling and cohesion measures at the module and
subsystem levels, within a release and across releases.

Ostrand and Weyuker [46], with the aim of aiding organizations to determine the optimal use
of their testing resources, identify various file characteristics to serve as the predictors of fault-
proneness. Based on a series of 13 releases of a large evolving industrial software system, they
observe that: (i) faults are concentrated in a small number of files and in a small percentage of
the code, (ii) decrease of testing efforts for previously high-fault files is a mistake, and (iii) ‘all
late-pre-release faults always appeared in under 5% of the files [46].’ The researchers do not
classify modules and faults, however.

5.4. Code inspection

Fagan introduced the idea of inspections (now called Fagan Inspections) [52]. He presented well-
defined steps for the inspection as well as roles for the participants [59]. He updated the work,
finding that the inspections had definitely improved the defect detection over a 10-year period,
with organizations such as AETNA and IBM reporting that the inspections were helping them
to discover 82–93% of all the defects detected [60]. Fagan noted the importance of exit criteria
repeatedly, listing it as one of the three critical requirements for performing inspections and
also noting that exit criteria need to be objective and repeatable [60]. In addition, he provided
rates that can be used for planning code reviews, such as that 500 non-commentary source
statements per hour can be examined for an overview [60]. These rates have been updated by
Laitenberger and DeBaud [61], they found that two hours would be a reasonable time period
for inspecting 200–300 lines of C code. These guidelines helped us allocate the time for the
inspection.

Ackerman et al. present their views on inspections based on their experience [62]. They note that
two steps of the inspection process are often overlooked: overview and preparation. Although the
authors do not discuss the taxonomies of defects, they do provide a sample checklist for inspecting
requirements specifications, and they provide some guidance on the defects for which to search.
They feel that having a definition of the types of defects to be found focuses the search, but they
do not provide such definitions [62]. Our work specifically addresses this notion by providing
fault links to guide the search for commonly occurring fault types based on the component
type.

Aurum et al. [63] looked at the state-of-the-art in code inspection techniques 25 years after
Fagan’s seminal paper [59] and found that there are differences in the structural models of inspection
used now (such as the number of inspectors, inspection without a meeting, etc.) as well as
differences in the support of the model (such as reading techniques, automated support for the
inspection meeting). Our work provides a technique to support code inspection. They also point
out and summarize the empirical validation of many of these suggested improvements to software
inspection [63]. Some of the improvements from their survey are discussed below.

A number of researchers have looked at the effect of the number of inspectors on defect
detection effectiveness. Porter et al. [64] undertook a controlled study and found that individual
inspectors have much lower performance than two-person teams or four-person teams. They
also found that there is not a significant difference between the effectiveness of two-person
teams and four-person teams. Shull et al. examined the effectiveness of perspective-based
reading (PBR) [65]. They found, through many studies with professionals and students, that
PBR helps individuals and teams of reviewers to find more defects in artifacts when dealing
with unfamiliar domains. Vermunt et al. [66] applied Group Support Systems (GSS) to
the inspection problem. They had students and professionals review a four-page document
either with or without GSS aid, they found that only 5% of the defects were not found in
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the preparation phase. There were no differences in the performance between the GSS and
non-GSS subjects, but the non-GSS subjects evaluated their session much higher than GSS
subjects [66]. Our work differs from the above in that we apply a new code inspection
technique.

Brykczynski [67] surveyed inspection checklists and found many checklists related to code. None
of these checklists were based on component type or fault links, however. In fact, the discussion of
project-specific checklists did not mention the idea of using historical fault occurrence information
to tailor a checklist, as is done in our work.

6. CONCLUSIONS AND FUTURE WORK

The analysis lends support that fault links are useful in the process of code inspection or walk-
through. We found that participants using our fault-link enhanced checklist found 1.7–2 times
more faults and 2–3 times more hard faults in the same amount of time as participants who used a
generic checklist. For experiment one (students), we were able to reject the null hypothesis that no
difference existed between the group using the fault link method and the control group in all cases:
Hrate was rejected in favour of the alternative, and the fault link group outperformed the control
group in terms of the number of faults detected; and Hhardrate was rejected in favour of the alterna-
tive, the experimental group outperformed the control group in terms of the number of hard faults
discovered. For experiment two (professionals), we were able to reject the null hypothesis that no
difference existed between the group using the fault link method and the control group in all cases
except one: Hrate was rejected in favour of the alternative for GradeStore, and the fault link group
outperformed the control group in terms of the number of faults detected; Hhardrate was rejected
in favour of the alternative for GradeStore and HWCreateSession, the experimental group outper-
formed the control group in terms of the number of hard faults discovered; however, Hrate was not
rejected in favour of the alternative for HWCreateSession as the p-value was 0.06 and thus not quite
significant.

In terms of the research questions, we found support for a ‘yes’ answer to RQ1, Does the
knowledge of fault links for a domain make the code inspection process more effective?, in the
student experiment and for the GradeStore component of the professional experiment. We found
support for a ‘yes’ answer to RQ2, Does the knowledge of fault links for a domain assist in
detecting ‘hard to find’ defects (hard faults)?, in both experiments and with both components. We
cannot generalize the results to other application domains, systems, or languages, however. We
found support for our fault link method in the online course management domain for the Java
language.

The work on the fault taxonomy and the component taxonomy is ongoing with the hope that
others will assist in their validation and improvement. We plan to examine languages such as Lisp
that provide control abstraction. The taxonomies are not completely orthogonal. Evaluating this
aspect of the taxonomy is an area of the future work.

Our experiments assessed the usefulness of fault links to aid software engineers or code inspec-
tors. We need to conduct more experiments to verify that fault links will assist other stakeholders
such as requirement engineers. A larger-scale study with a variety of industry projects (including
embedded and heterogeneous applications) across diverse domains and languages is needed before
any broad conclusions can be reached. A specific question of interest is whether fault links are
useful for safety critical development efforts. Also, we plan to examine the usefulness of each
individual fault link.

The main direction for the future work is the expansion of the fault link idea into a study of fault
chains. Faults rarely occur in isolation. They may be related longitudinally within a release (e.g.,
a design fault leads to a code fault) or across releases (e.g., incomplete fault repair). Several types
of fault chains have been identified, and more will inevitably be discovered as research progresses.
The ultimate goal of this work is to identify the V&V or quality assurance techniques to take
advantage of the knowledge of fault chains to prevent or detect faults as early as possible, as part
of FBA, to assist with developing reliable software systems.
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APPENDIX A–CHECKLIST USED IN THE EXPERIMENT - EXPERIMENTAL

Code Inspection Checklist 

Inspector Name:________________________________ 

Component Name:_________________________ 

The piece of code or component given to you is classified as a data-centric component. The results obtained from 
our research indicate that a data-centric component historically has 60% control/logic and 40% data faults 
(definitions next page). Thus, when performing a code walkthrough on such a component, one should make sure 
that the following issues have been addressed. 

__IF statements: 
      __Are attributes of the input parameters compared to correct values? 

__ Are variables used in the IF statements correct? 
__ Are correct values compared in the IF statements? 
__ Are strings compared using the equals () function (strings have to use equals ())? 

__ Loop attributes: 
__ Correct initial values for the loop control variables 
__ Correct terminal values for the loop control variables 
__ Correct processing of the loop control variables  
__ Loops with exits (i.e., no infinite loops) 
__ Are the loop exit conditions checked accurately? 

__ Missing control/logic statements may cause improper functioning of the component 
__ Var iables declared and initialized to correct values 
__ DB accessing statements refer to correct fields in the table 
__ Array attributes: 

__Correct array declarations 
__Array subscript or index always begins from 0 (zero) in Java 
__ Initial value of the array reflects its default value  
__ Sufficient array space to store values for varying inputs 

__ Meaningful component name  
__ Source file introductory comments are properly formatted and completely filled out 
__ Descriptions for header and source file properly describe module functions 
__ Method separators and headers exist for every method 
__ Line counts are within acceptable limits (try to keep each module less than 500LOC) 
__ All variables are described in appropriate locations 
__ Variable descriptions are accurate and in sufficient detail 
__ All declared local variables are used in the code 
__ Variable names are meaningful and unambiguous 
__ All variables are initialized before use 
__ Methods/Functions only perform one task 
__ Methods/Functions are properly commented for easy understanding 
__ External specifications of the method are easy to understand 
__ Spaces, parentheses, and continuation lines are appropriately used to make the code readable 
__ Error handling (try – catch blocks are employed and used correctly) 
__ Values  computed and stored in variables are correct 

Inspector  signature: _____________________________ Date: ________________ 
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Results from our Research 
Component #1 (GradeStore.java): This component is classified as a data-centric component. The results obtained 
from our research indicate that a data-centric component, historically, has this fault distribution:  60% control/logic 
and 40% data faults (definitions given below).  

Component #2 (HWCreateSession.java): This component is classified as a controller component. The results 
obtained from our research indicate that a controller component, historically, has this fault distribution:  45% 
control/logic, 27% data, and 9% computational, UI, and Platform faults. We also found that all the computational 
faults occurred in controller modules. 

Fault Definitions: 
Data:  
Data, which form basic building blocks of any software, are stored in data structures such as constants, variables, 
arrays, etc. within the software. These data structures go through several stages before they are actually put into use. 
In most languages, the data structures are declared, defined, and represented before being used. Faults occurring due 
to errors in any of these stages fall under this category. However, these faults are not due to incorrect computation. 

Control / Logic: 
The control and logic statements form the backbone of any software application being developed. These statements 
are decision-making statements that cause the software to take a particular path or to remain in a specific state. 
Errors occurring in these statements can occasionally result in very expensive faults that can compromise software 
performance.  

Computational: 
Computation is one of the several ways in which data is processed to obtain the required results either to conduct 
further computation or to provide necessary information to the user or to other modules.  

UI: 
The user interface is the main point of contact between the user and the system. The user interacts with the system 
in order to carry out a specific and important task. Depending on the user's experience with the interface, the system 
may succeed or fail in helping the user to carry out the task. Errors during the user interface design may lead to 
faults that may frustrate the user.  

Platform: 
An example of this fault type:  the software product works correctly under one operating environment but does not 
in another. The fault type is not due to varying environment settings, but due to lack of options to set the 
environment. For example, the software works correctly with Internet Explorer 5.0 but does not work well with 
Internet Explorer 4.0.  The problem is that there are no options in Internet Explorer 4.0 to get the software to work 
properly. 

Legend:      

Item is unique to this checklist (does not exist in the other checklist) 
Item appears on both checklists 
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APPENDIX B–CHECKLIST USED IN THE EXPERIMENT - CONTROL

Code Inspection Checklist

Inspector Name:________________________________ 

Component Name:_________________________

__ Correct variable and array declarations 
__ Meaningful component name 
__ Source file introductory comments are properly formatted and completely filled out 
__ Descriptions for header and source file properly describe module functions 
__ Method separators and headers exist for every method 
__ Line counts are within acceptable limits (try to keep each module less than 500LOC) 
__ All variables are described in appropriate locations 
__ Variable descriptions are accurate and in sufficient detail 
__ All declared local variables are used in the code 
__ Variable names are meaningful and unambiguous 
__ All variables are initialized before use 
__ Methods/Functions only perform one task 
__ Methods/Functions are properly commented for easy understanding 
__ External specifications of the method are easy to understand 
__ Spaces, parentheses, and continuation lines are appropriately used to make the code readable 
__ Correct indentation is used 
__ Error handling (try – catch blocks are employed and used correctly) 

Inspector  signature: _____________________________ Date: ________________ 

APPENDIX C–INSTRUCTIONS SENT TO SUBJECTS - CONTROL

Thanks for agreeing to participate in our experiment. Here are the instructions:

Please spend 75 minutes on the code review - please ensure that you spend half the time on
each module (even if you do not get finished).
Please do not speak with anyone else about this experiment to ensure no bias is introduced.

Please proceed in this manner:

- use the Checklist.doc list to guide your walkthrough of each module
- as you find problems with the code, please note it on the fault report sheet.doc form: entering
the module name and line number in the first column, a description in the second column,
and your judgment of how hard or easy it was to find in the final column.

REPEAT the above process for the second module

- then complete the Survey Sheet.doc form

APPENDIX D–HWCREATESESSION‖

HW Control/
Create Fault Logic Inter-
Session type: (C/L) C/L Data C/L Data Data C/L Platform C/L C/L face Data Computation

Hard?: Hard Hard Hard Hard Hard Hard Hard Hard Hard Hard

Fault
number:

1 2 3 4 5 6 7 8 9 10 11 12 13

‖Detailed data for reachable/agreeable participants.
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HW Control/
Create Fault Logic Inter-
Session type: (C/L) C/L Data C/L Data Data C/L Platform C/L C/L face Data Computation

Experimental
Participants

A1 x x x

A2 x x x x x x
A3
A4 x x
A5 x x x x x
A6 x x x x x x x
A7 x x x
A8 x x
A9 x x x x x
A10 x
A12 x x x x x

Control
Participants

B1 x

B2 x x
B3 x x x
B4 x x x x x x
B5
B6
B8 x x x
B9 x x x x
B10
B11 x x
B12
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