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SUMMARY

Software developers have individual styles of programming. This paper empirically examines the validity
of the consistent programmer hypothesis: that a facet or set of facets exist that can be used to recognize the
author of a given program based on programming style. The paper further postulates that the programming
style means that different test strategies work better for some programmers (or programming styles) than
for others. For example, all-edges adequate tests may detect faults for programs written by Programmer
A better than for those written by Programmer B. This has several useful applications: to help detect
plagiarism/copyright violation of source code, to help improve the practical application of software testing,
and to help pursue specific rogue programmers of malicious code and source code viruses. This paper
investigates this concept by experimentally examining whether particular facets of the program can be
used to identify programmers and whether testing strategies can be reasonably associated with specific
programmers. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper experimentally examines the consistent programmer hypothesis (ConPH): that a facet
or set of facets exist that can be used to recognize the author of a given program. If this hypothesis
is valid, there are several useful applications. If some test strategies work better for some program-
mers or programming styles than for others, the practical application of software testing will be
improved. Second, the ability to recognize authors will support the detection of plagiarism or
copyright violation of source code. Third, being able to recognize authors may help pursue specific
rogue programmers of malicious code and source code viruses and deter others considering such
undertakings.

The dissemination of infectious computer viruses has become commonplace. Viruses and mali-
cious code have cost companies, governments, and individuals billions of dollars in lost data and
productivity. Apprehending and convicting perpetrators are inhibited by many factors, including
inadequate technology law, unclear international criminal jurisdiction, and the difficulty of posi-
tively identifying the code’s author. When malicious code or viruses are in the form of source (such
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as macro languages used for word processing or spreadsheet packages), the proposed method can
serve to help law enforcement authorities in the pursuit of a specific rogue programmer and serve
as a deterrent to those considering such illegal activities.

Plagiarism detection is another application area for the consistent programmer hypothesis. It
benefits the education sector by helping to detect student plagiarism. It can also benefit the
legal sector in proof of ownership and software forensics. Plagiarism detection requires author
identification (who really wrote the code), author discrimination (did the same person write both
pieces of code), and similarity detection [1, 2]. This paper describes a method for recognizing the
author of a given program (or narrowing down to a set of potential authors), which can serve to
help detect software plagiarism and presents results from an empirical evaluation.

1.1. Competent programmer hypothesis

The competent programmer hypothesis was identified by DeMillo et al., who made the observation
that programmers have an advantage that is rarely exploited: ‘they create programs that are close
to being correct!’ [3]. The competent programmer hypothesis underlies several testing methods or
techniques such as mutation testing [3].

A similar hypothesis is postulated in this paper, that programmers are consistent. This is referred
to as the consistent programmer hypothesis (ConPH). The authors believe that this consistency
means that certain test techniques (such as random testing and category-partition testing) will
be better suited to some programmers than to others. Knowing that specific test techniques suit
specific programmers could be very useful during practical unit (and possibly integration) testing
of large multi-programmer applications, by allowing developers to apply only those test techniques
best suited to individual programmers. The goal of this experiment is to evaluate the static and/or
dynamic facets (if any) that can be used to recognize the author of a given program, as well as
to see whether certain testing techniques are better suited to some programmers than to others. A
facet is defined as an aspect, dimension or characteristic of a program that can be quantified‡. For
example, program measures such as number of comments, total number of operands, and unique
number of operators are all facets. These facets may belong to one or more domains (also called
components) or software quality attributes such as understandability, maintainability, etc. The
ConPH is discussed at length in the next section.

1.2. Consistent programmer hypothesis

This paper examines the conjecture that programmers are unique and that this uniqueness can be
observed in the code they write. Programmers often have a penchant for certain constructs (perhaps
preferring the while to the for loop) much as writers have preferences for certain words and for
certain media (e.g. iambic pentameter [5]). This uniqueness gives each program a ‘signature’ of
the person who wrote it. Educators teaching young children to write refer to this property as
‘voice.’ As will be mentioned in Section 2.1, authorship attribution researchers refer to this as
‘style.’ The goal of this experiment is to learn the specific characteristics of a program that amplify
the programmer’s ‘voice.’

To examine the consistent programmer hypothesis further, the ability to identify the author
of a piece of text is studied. The motivation for this research started with an informal survey
of a dozen colleagues in industry and academia. The survey was conducted via e-mail over the
course of several weeks. Most of those surveyed claimed that they could identify the author of
a hand-written note if the colleague had worked with the author for a number of years. Further,
many commented that they could identify the author of a piece of text even if it had been typed,
if they had worked with the author for several years. This was true regardless of whether the text
section appeared in an e-mail, specification, research paper, or report. When questioned further,

‡The term facet is also employed in Maturity Modeling research (such as the Software Engineering Institute’s
Capability Maturity Model Integration [4]) to refer to measured aspects of an organization or undertaking that is
being analyzed.
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they stated that certain phrases, certain words, bolding or capitalizing of certain words, or use of
certain non-textual symbols (such as dashes) tipped them off to the author. Similarly, some of those
interviewed agreed that they could identify the author of a piece of code, if they had worked with
the author for some time. This was due in part to syntactic formatting of the code (indentation, use
of headers, capitalization of variables), but also due to the use of certain constructs and patterns of
constructs. Identification of the author of source code is of interest here. This informal, preliminary
survey led us to formulate the principal hypothesis of this research.

The consistent programmer hypothesis postulates that a facet, or a set of related facets, exists
that can identify the author of a program. That is to say, there exists a set of facets f that are
the elements of the program p that can be used to map the program p to one or more potential
authors a. Further, it is postulated that a test technique t exists that is better suited to programs
written by author a1 than to programs written by author a2. Ramsey and Basili also felt that the
structure of code-impacted testing: ‘the data suggest that it may be possible to differentiate test
sets using structural coverage [6].’ In addition to the structure of code, the authors hypothesize
that programmers tend to make the same types of mental errors and hence introduce the same
types of faults into the code that they write. This hypothesis was generated based on observation,
a literature survey, and brainstorming. There is evidence to support the idea that some quality
assurance techniques are better at finding some types of faults than others (testing techniques
included) [7]. The authors decided to examine the widely used testing techniques (that also may
be applied in an automated fashion by advanced testing organizations) to determine if testing
techniques are better suited to certain programmers. This question was studied by undertaking a
series of experiments, first gathering data from professional programmers, and then from students.

1.3. Experiment

A series of experiments were undertaken to study the consistent programmer hypothesis. In the
first experiment, five professional programmers wrote the same three applications that were then
evaluated statically and dynamically. The static evaluation showed that five aspects of programs,
or facets, have potential for recognizing the author of a program or at least narrowing down to
a set of potential authors: (1) number of lint warnings, (2) number of unique constructs, (3)
number of unique operands, (4) average occurrence of operators, and (5) average occurrence
of constructs§ . In addition, three of these facets were shown to be correlated with the individual
programmer and the application. Dynamic evaluation was used to obtain a testability measure for
each program, but the measure was not found to be correlated with the individual programmer
and application (Section 3 discusses this further). In a second study, the work was repeated for
four programs written by 15 graduate students, and it was found that the ratio of the number of
semi-colons per comment also has potential for recognizing authors.

1.4. Paper organization

Section 2 discusses related work and the consistent programmer hypothesis. Section 3 describes
the research hypothesis. Section 4 defines the experiment design. It presents a description of the
techniques used, the subject programs evaluated, and the measurements taken for these subject
programs. Section 5 addresses the analysis and results of the experiment. Finally, Section 6 presents
conclusions and future work.

2. BACKGROUND

The concept investigated for this paper is related to literary analysis and software forensics; hence,
a brief review is required. This review is followed by a statement of the main topic for this research,
the consistent programmer hypothesis.

§A construct is a reserved word in the programming language such as if, else, for. Constructs are a subset of
Halstead’s operators.
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2.1. Literary analysis and software forensics for authorship attribution

Literary analysis for authorship attribution (also called stylometry) refers to determining the author
of a particular piece of text. Style, also called voice, concerns the way in which a document is
written rather than its contents [8]. Stylometry has been a field of interest for many centuries,
for those in the humanities as well as lawyers, politicians, and others [9]. Many techniques
exist for analyzing literature/text in order to determine the author. A three-step process is often
applied: canonicization, determination of event set, and statistical inference. Canonicization refers
to restricting the event space by treating similar events as identical (in English, the lower and
upper case E would be treated as identical, for example) [9]. The event space is the collection
of all possible event sets. Event set determination involves partitioning the literature (the text)
into non-overlapping events and removal of non-meaningful events. The analyst can specify what
should be extracted as event sets. For example, characters can be extracted as event sets, words
can be event sets, character N-grams can be event sets (a collection of N characters), and word
N-grams can be event sets (a collection of N words) [10]. The events that have not been discarded
are then subjected to statistical analysis such as Principal Components Analysis (PCA) [11] or
Linear Discriminant Analysis [12].

Let us step through a typical three-step literary analysis process, using the steps described above.
One can imagine many ways to proceed with such analysis when attempting to discover the author
of a piece of text written in English (a user’s manual, for example). One may decide that individual
letters will be events (such as a, e, p, etc.) or that words will be events. If using words as events,
a removal list may be used to winnow the list of events. Once the event list has been obtained,
statistical inference might be performed by building a histogram of the events and comparing this
with a standard such as the Brown histogram [13]. The Burrows method follows the same three
steps outlined above, with specific activities applied in steps two (event set determination) and
three (statistical inference) [14, 15]. In the event set determination step, most words are thrown
out, except for a few select function words (a part of speech that marks grammatical structure, such
as an article, preposition, conjunction). These few words are used to build a histogram that is then
compared with similar histograms collected from known documents [14, 15]. Juola and Baayen
follow the same process, use either letters or words as the event set, and then look at the cross-
entropy between the histogram (or probability distribution) of the current text and of other historical
or standard texts [16]. Cross-entropy is the application of the Kullback–Leibler divergence [17]
to small samples. Specifically, ‘the Kullback–Leibler divergence is a non-commutative measure of
the difference between two probability distributions P and Q. KL measures the expected difference
in the number of bits required to code samples from P when using a code based on P, and when
using a code based on Q. Typically, P represents the ‘true’ distribution of data, observations, or
a precise calculated theoretical distribution. The measure Q typically represents a theory, model,
description, or approximation of P [18].’

Software forensics refers to the use of measurements from software source code or object code
for some legal or official purpose [19]. Plagiarism detection requires author identification (who
really wrote the code), author discrimination (did the same person write both pieces of code),
and similarity detection [19]. Some features and metrics suggested for malicious code analysis
by Gray et al. [1] and Kilgour et al. [2] include: choice of programming language, formatting
of code (e.g. most commonly used indentation style), commenting style (e.g. ratio of comment
lines to non-comment lines of code), spelling and grammar, and data structure and algorithms
(e.g. whether pointers are used or not). Some metrics suggested for plagiarism detection by Sallis
et al. [20] are volume (e.g. Halstead’s n, N, and V[21]), control flow (e.g. McCabe’s V(G) [22]),
nesting depth, and data dependency.

A web application called JPlag has been used successfully to detect plagiarism in student Java
programs. It finds pairs of similar programs in a given set of programs by parsing the programs,
converting the program to token strings, and then applying the Greedy String Tiling algorithm
[23]. Schleimer et al. [24] use winnowing, a local fingerprinting algorithm, to select document
k-grams as the document’s representative fingerprints (the k-gram model assumes that the
probability of a ‘word’ occurring in a sentence depends only on the previous k−1 words). The
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Moss tool, which Schleimer et al. used in experiments, is based on this technology [24]. Oman
and Cook examined authorship analysis by focusing on markers such as blocks of comments,
character case (upper versus lower), etc. They used clustering analysis and found that authors
who consistently used such markers could be identified. A problem with this study is that
they examined textbook implementations of algorithms, and these could have been improved
or modified by editors and might not illustrate the original author’s style [25]. Spafford and
Weeber [26] define software forensics as examining code remnants¶ to gather evidence about the
author. They compare this with handwriting analysis. They suggest a number of features that may
provide evidence of the author such as data structures and algorithms, choice of system calls,
errors, comment styles, etc. Krsul examined programming layout metrics, such as placement of
comments, placement of brackets, indentation, etc. in order to identify program authors [27].

Researchers at the University of Otago have developed a system, integrated dictionary-based
extraction of non-language-dependent token information for forensic identification, examination,
and discrimination (IDENTIFIED), to extract counts of metrics and user-defined meta-metrics
to support authorship analysis [1]. In a later paper [28], they examined the usefulness of feed-
forward neural networks (FFNN), multiple discriminant analysis (MDA), and case-based reasoning
(CBR) for authorship identification. The data set included C++ programs from seven authors
(source code for three authors came from programming books, source code for another author was
from examples provided with a C++ compiler, and three authors were experienced commercial
programmers). Twenty-six measures were extracted (using IDENTIFIED), including proportion
of blank lines, proportion of operators with whitespace on both sides, proportion of operators
with whitespace on the left side, proportion of operators with whitespace on the right side, and
the number of while statements per non-comment lines of code. All three techniques provided
authorship identification accuracy between 81.1 and 88% on a holdout testing set‖, with CBR
outperforming the other two techniques (FFNN and MDA) in all cases by 5–7% [28].

Software engineering researchers have indirectly examined authorship when studying other
areas. Programmer characteristics have been indirectly addressed by research examining the main-
tainability of modules written by different programmers [29, 30] and by research on the fault
proneness of modules written by different programmers [31].

Kilgour et al. [2] looked at the usefulness of fuzzy logic variables for authorship identification.
The data set was comprised of eight C++ programs written by two textbook authors. Two
experienced software developers then subjectively analyzed the programs, examined measures such
as spelling errors, whether the comments matched the code, and meaningful identifiers. They then
assigned one of the fuzzy values Never, Occasionally, Sometimes, Most of the Time, and Always
to each measure. The authors concluded that fuzzy-logic linguistic variables have promise for
improving the accuracy and ease of authorship analysis models [2].

Collberg and Thomborson [32] examined methods for defending against various security attacks.
They suggested using code obfuscation to transform a program into another that is more difficult to
reverse engineer, while maintaining the semantics of the program. It appeared that control and data
transformations might hold promise for erasing a programmer’s ‘style,’ though not all factors being
explored for the consistent programmer hypothesis (ConPH) would be ‘erased.’ In addition, the
lexical transformation they presented [26] would not serve to remove the programmer’s signature.

The work presented here places the emphasis on structural measures instead of stylistic measures.
When attempting to mask identity, an author can easily modify stylistic items within a program.
Stylistic measures such as blank lines, indentation, in-line comments, use of upper or lower case
for variable names, etc. are then no longer reliable. This approach to masking is seen often when
multiple students have copied from one student’s program. The plagiaristic students re-name all

¶A remnant of an attack may take many forms, including programming language source files, object files, executable
code, shell scripts, changes made to existing programs, or even a text file written by the attacker [26]. This paper
concentrates on source files or fragments of source files.

‖In holdout validation, ‘observations are chosen randomly from the initial sample to form the validation data, and
the remaining observations are retained as the training data. Normally, less than a third of the initial sample is
used for validation data.’ From Wikipedia entry on Cross Validation, http://en.wikipedia.org/wiki/Cross validation.
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the variables. They remove or modify the comments and blank space. They re-order the methods
or procedures. They modify indentation. In addition, stylistic features may be omitted from source
code whereas programmers must use structural constructs to write functioning code. The approach
proposed here does not require large quantities of data (such as is needed to train an FFNN).
A unique aspect is that a number of testing-related measures are used to augment the proposed
authorship recognition approach. In addition, measures derived from dynamic analysis of the
programs as well as measures derived from static analysis are used in the proposed approach.
An experiment was performed to validate the research. Professional programmers who developed
the same programs according to written program specifications were used in the experiment. This
helped control for confounding factors.

2.2. A potential application of the consistent programmer hypothesis

The consistent programmer hypothesis was introduced in Section 1.2. Here, a high-level illustration
of how the ConPH might be used is presented. Specific details are deferred until later in the
paper. If the facets discussed above can be used to map a program to a unique author or at least
narrow down to a set of potential authors, they may also be used to generate an identifier or
discriminator for a programmer, called the target discriminator. A discriminator could similarly
be built for individual programs, called the source discriminator. The idea is to collect enough
information (experimentally) to be able to build a look-up table of target discriminators (unique
to a programmer) and suitable quality assurance methods. To illustrate, testing techniques are
examined first. Suppose that by experimentation and actual execution of various test techniques,
it is discovered that the Category-Partition test technique is best suited to programmer 4’s style
(where programmer 4 has a target discriminator value of 374), that programmer 5 has a target
discriminator value of 436, and that it appears that both random testing and category-partition
testing work equally well for programmer 5. The corresponding look-up table would be:

Target Category-partition Random . . . . . . Another test
discriminator (test technique 1) (test technique 2) technique

value (test technique N)

Programmer 4 374 X
Programmer 5 436 X X . . . . . . . .

... . . . . . . . .
Programmer M

Note that a large number of test techniques and programmers could be listed in the table (hence
the Mth programmer and Nth test technique).

When a given program is being evaluated to decide the type of testing technique to use: the
source discriminator (discriminator for a program) will be calculated, a simple table look-up
procedure will be used to find the target discriminator, and the row for the target discriminator
will identify the applicable test techniques.

It is also desirable if the facet or set of facets for identifying an author can be derived from as
small a sample of code as possible. In many cases, only one module or source code method will
be available as the ‘fingerprint’ for an author that one is trying to ‘tie’ to another piece of code
(such as a piece of malicious code, another student’s program, etc.).

3. RESEARCH HYPOTHESIS

The general hypothesis for this experiment is that one or more facets exist for a program that can
identify the author of the program. Informal hypotheses are presented below followed by more
formal null hypotheses.
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1. The dynamic measure of testability (the likelihood that software faults in a program will be
detected during testing [33]) is correlated with the input distribution used and the individual
programmer such that one particular testing technique (category-partition, random, or all-
edges) is best suited to a particular programmer’s code. The null hypothesis is that the mean
value of testability is not affected by the programmer.

2. The static measure of number of semi-colons per comment is correlated with the individual
programmer. The null hypothesis is that the mean value of number of semi-colons per
comment is not affected by the programmer.

3. The static measure of average occurrence of operands is correlated with the individual
programmer. The null hypothesis is that the mean value of average occurrence of operands
is not affected by the programmer.

4. The static measure of average occurrence of operators is correlated with the individual
programmer. The null hypothesis is that the mean value of average occurrence of operators
is not affected by the programmer.

5. The static measure of average occurrence of constructs is correlated with the individual
programmer. The null hypothesis is that the mean value of average occurrence of constructs
is not affected by the programmer.

6. The static measure of average occurrence of constants is correlated with the individual
programmer. The null hypothesis is that the mean value of average occurrence of constants
is not affected by the programmer∗∗.

7. The static measure of number of unique constructs is correlated with the individual
programmer. The null hypothesis is that the mean value of number of unique constructs is
not affected by the programmer.

8. The static measure of number of unique operands [21] is correlated with the individual
programmer. The null hypothesis is that the mean value of number of unique operands is not
affected by the programmer.

9. The static measure of number of lint warnings is correlated with the individual programmer.
The null hypothesis is that the mean value of number of lint warnings is not affected by the
programmer.

The null hypothesis was rejected when the probability that the differences in the facets were
attributable to chance was small (p-value was 0.05 or less). That is to say, if the null hypothesis
was rejected for facet X, facet X helps to uniquely identify the author of a program. The alternative
hypothesis is that the mean value of the facet was affected by the programmer. Note that this
process was used as a starting point for finding potential facets to help build a discriminator.

4. EXPERIMENT DESIGN

Two studies were undertaken, one using professional programmers and the other using students.
In the first study, five programmers wrote the same three C applications. This study consisted of
six steps. First, all programs were compiled and tested in an ad hoc fashion to ensure that the
competent programmer assumption could be made (that the programs are close to correct). Second,
control flow graphs were manually generated for each program. Third, test case sets were generated
for all 15 programs using three separate testing techniques. Fourth, measures such as number of
unique operands and number of constants per semi-colon were collected manually to perform static
evaluation of the applications. Fifth, the programs were submitted to lint (a static analyzer that
detects poor programming practices such as variables that are defined but not used). Sixth, the
test cases were submitted to the Automatic Test Analysis for C (ATAC) tool [34] to ensure that
minimal coverage criteria were met. The PISCESTM test analysis tool [33] was used to perform

∗∗A constant will be defined in a program (such as static final int MAX LENGTH = 2000;), each subsequent use of the
constant (MAX LENGTH) is counted as one (1) occurrence of a constant.
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dynamic evaluation, measuring testability of the programs (dynamic evaluation is described in
Section 4.3.1).

The second study attempted to see if similar results would hold true for students who may
not have had time to develop a distinct style. Fifteen graduate students wrote the same four C
programs. This study consisted of the first four steps performed for the first study (see above).

The remainder of section 4 is organized as follows. Section 4.1 discusses the testing techniques
used in both studies. The programmers and programs of the first study are presented in Section 4.2.
The measurements for both studies are presented in Section 4.3. Unique aspects of the second
study are discussed in Section 4.4.

4.1. Testing techniques

Testing is used to experimentally evaluate the consistent programmer hypothesis because a major
purpose of the ConPH is to improve testing in a practical way. It is postulated that some program-
mers will achieve higher dynamic evaluation scores (testability) when using certain test techniques.
Three common test techniques were chosen: random testing [35], category-partition testing [36, 37],
and all-edges testing [38, 39]. It is worth noting that because programmers were given a great
degree of flexibility in implementing solutions, not all test cases could be used for all versions of
the programs. Specifically, one programmer implemented Mid in such a way that all three inputs
(integer values) had to be unique. That is, if a ‘1’ was entered for the first value, a ‘1’ could not
be entered for the second or third values. This made it impossible to run a few of the random
and category-partition test cases for that program, hence, slight modifications had to be made to
the test case set. The next three subsections describe how these test techniques were used in the
experiment.

4.1.1. Random testing. Beizer defines random testing as the use of a random data generator that
will force arbitrary but achievable paths through a routine [35]. For this work, random testing
refers to the use of a random number generator to build test cases that meet a specified coverage
criterion. The coverage aspect was added to ensure measurability and comparability of the results
of all the testing techniques. Random test cases were built for all three programs using a three-step
procedure. First, values were generated using a random number generator based on the C library
utility rand. To run the random number generator, the number and range of values were specified.
The range of values was from −9999 to +9999. The second step was to submit the subject
programs to the ATAC tool [34] to determine block, decision, computation-use, and predicate-use
coverage for the test cases. Block coverage refers to the percent of basic blocks that are executed.

Checking the coverage of the random test cases required three ATAC runs, one run for each of
the three programs††. The third step required the generation of additional test cases and an ATAC
re-run for programs that did not achieve coverage of at least 90% for one of the four measures.
This third step was repeated until at least one of the coverage measures equaled or exceeded 90%.
Additional random test cases were added for both Trityp and Mid to reach 90% coverage.

4.1.2. Category-partition testing. The category-partition testing technique is a specification-based
technique that uses partitioning to generate functional tests for programs [36, 37]. The specifications
shown in Figure 1 were used to generate category-partition test cases. The steps followed were:
(1) analyze the specification, (2) partition the categories into choices, (3) determine constraints
among the choices, and (4) write test cases [36].

Once test cases were generated, they were submitted to ATAC, just as described for random
test cases. This required three ATAC runs, one for each of the three programs††. For one program

††Only one version of each of the three programs was needed in order to generate test cases (random and category-
partition). The cases were then run on all five programmer’s programs. It was randomly decided to use programmer
3’s version of each program (mid, find, trityp) to build the first set of test cases (that were then improved until
the ATAC tool showedthat the coverage goal had been met).
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Program 1  ---> Write a subroutine (or function) FIND that has three parameters:  An array of
elements (A); an index into the array (F); and the number of elements that should be considered
(N).  F is an index into array A.  After FIND is executed, all elements to the left of A(F) are less
than or equal to A(F) and all elements to the right of A(F) are greater than or equal to A(F).  Only
the first N elements of the array are considered.

Program 2 ---> Write a subroutine or function MID that examines three integers and returns the
middle value (for example, if 6, 9, and 3 are entered, 6 is returned).

Program 3 ---> Write a subroutine or function TRITYP that examines 3 integer values and
determines what type of triangle (if any) is represented.  Output will be:
TRIANG=1 if triangle is scalene 
TRIANG=2 if triangle is isosceles 
TRIANG=3 if triangle is equilateral
TRIANG=4 if not a triangle

 

Figure 1. Specifications for Find, Mid, and Trityp.

(Trityp), additional test cases had to be added to reach 90% coverage. The coverage aspect was
added to ensure measurability and comparability of the results of all the testing techniques.

4.1.3. All-edges testing. The all-edges criterion (also called branch testing) requires that every
edge in the program’s flow graph be executed by at least one test case [38, 39]. Since branch
testing is a white box testing technique it depends on actual details of the program implementation.
Therefore, a flow graph had to be drawn for all 15 programs in order to build test cases. For this
experiment, control flow graphs were manually generated, and the all-edges test cases were built
by hand. The test cases were then submitted to ATAC for each program. This required fifteen
ATAC runs; five runs for each programmer’s version of Find, five runs for each version of Mid,
and five runs for each version of Trityp.

It should be noted that 100% coverage could not be achieved for all versions of all programs.
For example, one programmer’s implementation of Trityp included some dead code, which made
it impossible to achieve 100% for blocks covered. Similarly, faults in several of the programs
prevented certain branches from being taken. For practical purposes, a set of test cases was
considered adequate if at least one coverage measure reached or exceeded 90%. In most cases,
the coverage reached 97% or more, but in one or two cases the highest coverage value was 91%
(see table below for block coverage for all-edges). For these lower coverage percentage programs,
additional test cases were not added. This is because the same method of generating flow graphs
and building test cases was carefully applied to each program. Arbitrary generation of additional
test cases for an individual program would require that all program test cases be revised; otherwise
a bias would be introduced.

Programmer/Program Trityp (%) Find (%) Mid (%)

Programmer 1 91 100 93
Programmer 2 97 100 100
Programmer 3 91 100 100
Programmer 4 97 95 100
Programmer 5 100 97 100

4.2. Programmers

This research seeks to exploit differences among individuals. All programmers were given the same
specifications for the three programs, and were asked to implement the programs in C by a specified
date. The subject programs were intentionally short: to serve as a small sample of code; to increase
turn-around time; and to minimize volunteer dropout. Programmers were not monitored. No time
limit was set. No order of development of the three programs was mandated. No requirements for
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Table I. Programmer profiles.

Subject Employer Highest degree Work experience

1 BDM Int’l Inc. M.S. SWE Programmer, Analyst
2 Science Applications International Corp. (SAIC) M.S. CS Programmer, Analyst
3 SAIC M.S. CS Analyst, Programmer
4 E-Systems M.S. CS Programmer, Analyst
5 George Mason University Ph.D. CS Asst. Professor, Programmer

It does not matter what type of array you use or how you get input (from a file, interactively,  etc.).  

You  don’t have to sort the array,  though that is a possible solution.  If N=6, elements a[7] through 

a[10] are ignored.  If you have the following values, a=2 5 1 1 3 4 4 4 4 4, N=6, F=3, one correct 
result would be:  a=1 1 2 5 3 4 because a[F]=1 and all values .LE. 1 are now to the left of 1 and 

all values greater than or equal to 1 are now to the right of it (even though they are not sorted).  

a=1 1 2 3 4 5 is also a correct result. 

Figure 2. Clarification of Program Find.

in-line documentation (comments) were identified. These types of requirements and constraints
were not levied in order to encourage the programmers to use their own characteristic style.

4.2.1. Profile of the programmers. An attempt was made to use experienced programmers in
the experiment. One possibility is that novice programmers or programmers new to a particular
programming language might not exhibit a unique style or voice, because they are still developing
their style. Researchers have found this to be true in the field of literary authorship attribution
[40]. That is, novice writers may not exhibit a unique style or ‘authorial fingerprint.’ The second
experiment used inexperienced programmers to separate this variable.

Five programmers with varying backgrounds and levels of experience assisted with the experi-
ment. A profile of the programmers is shown in Table I.

The disparity in the size of the solutions and the amount of time programmers spent on the
solutions was striking. For example, one programmer implemented the program Find in 23 lines
(counting semi-colons), while another programmer used 69 lines. Similarly, the amount of in-line
documentation varied greatly. Several programmers supplied no comments at all, while another
provided a comment for every 1.5 semi-colons.

4.2.2. Programs. The three programs were Find, Mid, and Trityp. The specifications for these
programs were derived from the in-line comments in implementations by Offutt [41]. Figure 1
presents the specifications exactly as they were provided to the programmers. It should be noted
that the restrictions in program Find relating to the index (F) being less than or equal to the
number of relevant elements (N) were ignored during test case generation. That is, test cases were
generated to violate these constraints (F>N ) as well as to comply with the constraints (F≤N).

Questions were received from three of the programmers on the Find program, hence, a subsequent
specification clarification was sent to and was used by all five programmers (they had not finished
their solutions before they received the information). It is shown in Figure 2. It should be noted
that the researcher’s response to the questions might have biased the programmers in favor of a
sorting solution to Find. All programs met the specifications.

Table II shows the size of the programs used in the first experiment. Five programs were used
for each of the three specifications. The size is given in lines of executable code (LOC).

4.3. Measurements

The C programs were analyzed statically and dynamically, as discussed below.
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Table II. Size of programs from first experiment.

Program LOC 1 LOC 2 LOC 3 LOC 4 LOC 5

Find 46 28 23 69 46
Mid 35 10 16 18 17
TriTyp 34 13 20 36 26

4.3.1. Experimental evaluation using PISCES. PISCES performs dynamic failure analysis to
predict the testability of programs. Testability [33] is defined as the likelihood that software faults
that exist in the program will be revealed during testing. If testability is high (close to 1), then it
is likely that any faults in the code will easily be found during testing. If testability is low (close
to 0), it is not likely that faults will be found [33].

PISCES performs execution, infection, and propagation for each program it analyzes. Execu-
tion analysis ‘estimates the probability of executing a particular location when inputs are selected
according to a particular input distribution [33]’. Infection analysis is based on mutation anal-
ysis. Mutation analysis is a fault-based testing technique that helps the tester create a set of
test cases to detect specific, predetermined types of faults [3]. Mutation analysis systems intro-
duce a large number of simple faults, called mutations, into a test program to create a set of
mutant programs. These mutants are created from the original program by applying mutation
operators, which describe syntactic changes (such as relational operator replacement or statement
deletion). Test cases are then measured by determining how many of the mutant programs produce
incorrect output when executed. Each live mutant is executed with the test cases and when a
mutant produces incorrect output on a test case, that mutant is said to be ‘killed’ by that test
case and is not executed against subsequent test cases [41]. Infection analysis generates program
mutants and then estimates the probability that a program mutant alters a data state (variables,
input files, output files, and the program counter) of the program [33]. Propagation analysis
alters (or infects) a data state of a program (termed perturbing) and then examines the probability
that this perturbation will result in a change in the program output (i.e., the perturbation propa-
gated) [33]. An input distribution (that is, a set of test cases) must be provided for each program
run with this tool. The tests are used to estimate the probabilities for execution, infection, and
propagation.

Three testing techniques (category-partition, random, and all-edges) described in Section 4.1
were applied to all 15 programs. This required a total of 45 PISCES runs: one run for each of the 15
programs for all-edges tests (15 runs); one run for each of the 15 programs for category-partition
tests (15 runs); and one run for each of the 15 programs for random tests (15 runs).

4.3.2. Experimental evaluation using static analysis. All programs were manually analyzed so
that static measures could be gathered. Fourteen direct measures were extracted from the source
code and test case generation. Five indirect measures, such as average number of comments per
semi-colon, were also obtained.

Counting was performed consistently for each program (using the CMT++ tool by Testwell
(http://www.testwell.fi/cmtdesc.html). Most static measures are self-explanatory (such as number
of semi-colons). The counting rules that are not so obvious are:

Operator: One of the following: !!=%%=&&&||&= ()∗∗=++++=, −−−−=−>....//=:
::<<< <<=<====> >=>> >>=?[]∧∧ ={}||=∼

Operands: Operator and operand counts are very intuitive. The statement f(x, y) is counted as
follows: f, x and y are operands and the parentheses and comma are operators.

Number of comments: From /* to the ending symbol */ was counted as one comment, even if
it ran over several lines.

Average occurrence of operands: Defined as the total number of operands in a program divided
by the number of unique operands. Suppose a program had only two unique operands, A and B. A
occurred three times in the program and B occurred four times. The average occurrence is found
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Table III. Static and dynamic measures collected for consistent programmer hypothesis experiment.

Research Find Mid Trityp Find Mid Trityp
Hypothesis Pgmr 1 Pgmr 1 Pgmr 1 Pgmr 2 Pgmr 2 Pgmr 2

Variables:
For # comments 16 1 0 0 0 0
R2
For # semi-colons 46 35 34 28 10 13
most
R8 # unique operands 17 5 4 16 9 9
R7 # unique 11 9 9 7 5 5

constructs
R3 Avg. occur. 6.05 11 9 4.5 4.55 5.88

of operands
R4 Avg. occur. 6.33 7.5 6.75 3.13 2.5 2.36

of operators
R5 Avg. occur 3.81 4.33 4.88 3.42 1.8 2.8

of constructs
R6 Avg. occur 2.66 4 4 0 0 0

of constants
R2 # semi- 2.9 35 0 0 0 0

colons/comment
R1 Random cases 0.04 1

testability
R1 All-edges 0.04 0.008

testability
R1 Category-partition 0.33 0.125

testability
Lint results

R9 # warnings 12 4 2 46 42 42

by adding the total number of occurrences of all operands (3+4=7 occurrences) and dividing by
the number of unique operands (72 =3.5). Thus, 3.5 would be the value for this program.

Average occurrence of operators: Defined as the total number of operators in a program divided
by the number of unique operators.

Average occurrence of constants: Defined as the total number of constants in a program divided
by the number of unique constants. This value is set to 0 if the number of unique constants is 0.

Average occurrence of constructs: Defined as the total number of constructs in a program divided
by the number of unique constructs. It should be noted that an if construct was counted as 1 even
if it contained multiple else if clauses or an else clause.

In addition to these static measures, the UNIX utility lint was run on each program to gather
information on the number of warnings received. The manual generation of the program flow
graph, the extraction of each of the static measures from the code, and the running of lint took
approximately 1 h and 35min per program (15 programs total). Note that the most time-consuming
process, manual extraction of measures, could be performed quite quickly if a tool was available
(no tool was available to the authors until after the work had been performed manually).

4.3.3. Data analysis techniques. The static and dynamic measures for each program were recorded
as the rows in a spreadsheet as shown in Table III. Each measure in the table is mapped to a research
hypothesis (such as Research hypothesis 1 (R1)—testability) or is used to calculate a measure
for a hypothesis (Research hypothesis 2 (R2) requires number of comments in order to calculate
number of semi-colons per comment), as indicated in the first column of the table. Next, analysis
of variance (ANOVA) was applied. The assumption of normality of errors was met (as could be
seen visually by the residuals scatterplot—the residuals were normally distributed). Homogeneity
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Table III. Continued.

Find Mid Trityp Find Mid Trityp Find Mid Trityp
Pgmr 3 Pgmr 3 Pgmr 3 Pgmr 4 Pgmr 4 Pgmr 4 Pgmr 5 Pgmr 5 Pgmr 5

3 2 1 21 4 8 22 10 17
23 16 20 69 18 36 46 17 26
9 4 4 26 12 15 13 9 7
4 3 3 6 4 6 6 4 6

4 3 3 6 4 6 6 4 6

7.55 7.25 13.75 4.92 3.92 4.66 7.23 4.66 6.29

5.6 3.33 6.4 5.57 2.5 5.25 5.66 3.66 5.4

4.25 4.66 5 5.5 3.75 3.66 3.5 2.75 3

0 0 0 8 0 3 3 0 3.25

7.66 8 20 3.28 4.5 4.5 2.09 1.7 1.53

0.03 0.04 0.08 0.1 0.04 0.04 0.03 0.04 0.08

0.125 0.04 0.04 0.25 0.04 0.04 0.03 0.06 0.04

0.027 0.04 0.04 0.2 0.04 0.04 0.25 0.04 0.04

3 3 6 8 5 5 5 3 6

of variance was met for the majority of the measures (as shown by Bartlett’s chi-square)‡‡. The
design of the ANOVA was one between subject factor, with that factor being programmer. The
factor had five levels (one for each programmer) and there were three observations in a condition
(one for each program). This required 13 runs, one for each measure shown in Table III, each run
took approximately one minute.

4.4. Networking data set

In the second study, 15 graduate students wrote four C programs for a graduate networking course
(a protocol layer assignment by instructor Ken Calvert). The same specifications were implemented
by each student [42]. The students had the same due date for the programs. The only specified
order was that programs one and two were to be turned in prior to programs three and four. Static
analysis of the 60 programs was performed using a commercially available tool (CMT++ tool
by Testwell), with the same measures collected as for the five-programmer data set§§ . ANOVA
was applied. The assumption of normality of errors was met (as could be seen visually by the
residuals plot), as was homogeneity of variance. The programs ranged in size from 53 to 468 lines
of code [43].

‡‡ANOVA is a robust procedure and works well unless both the assumption of normality and of homogeneity of
variance are violated. That was not the case for the data presented here.
§§Note that it could not be confirmed that the counting rules used by the commercial tool matched the manual
counting rules used for the programs of the five professional programmers (the rules were not available for
each measure providedby the tool). This constitutes an instrumentation threat to internal validity. This threat was
minimized by verifying the rules that were available. Therefore, the results of the networking data set should be
viewed independently of the results for the professional programmer data set.
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5. ANALYSIS AND RESULTS

The two experiments in Section 4 had some limitations and constraints that must be kept in mind
when examining the results. Threats to validity are discussed in Section 5.1.

The data were analyzed:

1. to look for an effect based on programmer (or author), and
2. to look for an effect based on the programs.

These areas are addressed in Sections 5.2 and 5.3. The overall hypothesis results are discussed
in Section 5.4. Results for the networking data set are presented in Section 5.5.

5.1. Threats to validity

The results from the experiments are subject to a number of limitations. Of particular concern are
internal, external, and conclusion validity. An experiment can be said to possess internal validity
if it shows a causal relationship between the independent and dependent variables. A number
of influences can impact internal validity. For example, the programmers’ solution to the Find
program may have been influenced by the experimenter responses to questions on the specification.
However, this could have only served to prompt the programmers to use a similar solution, resulting
in similar programs. Hence, any bias would have been in favor of the null hypothesis. History
threats to internal validity were not applicable, as all programmers experienced the same current
events [44].

To minimize selection threats to internal validity, each programmer was assigned the same
three programs. In addition, the order in which the programs were developed was not mandated.
Another threat to internal validity is that of programmers biasing each other. Specifically, two of
the programmers work in the same location and may have discussed the programs, causing their
solutions to be similar (note that no correlation was found between the programs of these two
authors). Each programmer was asked to work in isolation to minimize this threat.

Experimental mortality threats to internal validity were not applicable, as all programmers
completed the assigned programs [44]. Design contamination threats to internal validity were not
applicable, as there was not a separate control and experimental group [44]. There is a possibility
of an instrumentation threat to internal validity (see Section 4.4) due to switching to a commercial
tool for the networking data set.

External validity is possessed by an experiment if the causal relationship can be generalized to
other groups, environments, etc. There were several threats to external validity in the experiments.
First, a small number of programmers were used in the experiments. Each programmer wrote
a small number of programs (three). Also, these programs were very small and were not very
complicated to write. It is not certain that the results seen here would be observed for larger,
more complex applications. Also, there is a potential bias since all the programmers are from the
Washington, DC, metropolitan area and four of the five work for defense contractors.

Another limitation of note relates to the use of the PISCES tool. An incompatibility existed
between four of the 15 programs and PISCES in that the tool was unable to compile the programs
and therefore could not perform dynamic analysis. The incompatibility dealt with the use of
certain programming constructs. One approach would have been to ‘forbid’ the programmers from
using these constructs. However, it was decided that such a prohibition could bias the solution to
the specifications and may cause a programmer to stray away from their characteristic style and
preference of constructs. The programs were compatible with the ATAC compiler. Unfortunately,
three of the four programs were written by the same programmer (Programmer 2). Hence, dynamic
evaluation was performed for only four of the five programmers.

Construct validity is possessed by an experiment if the theoretical concepts being examined
and the measuring procedure are in concurrence. A possible threat to construct validity deals with
the testability measure provided by the PISCES tool. This measure might not discriminate well
between test suites.
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Table IV. Distinguishing facets by programmer.

Programmer facets Distinguishing? SS DF MS F p

Number of semi-colons per comment No 408.4 4 102 1.1 0.41
Average occurrence of operands No 60.2 4 15 3.5 0.06
Average occurrence of operators Yes 27.1 4 6.8 6.7 0.01
Average occurrence of constants No 39.3 4 9.8 2.6 0.12
Average occurrence of constructs Yes 9.0 4 2.3 5.0 0.02
Number of unique constructs Yes 64.4 4 16.1 40.2 2.4E−05
Number of unique operands Yes 238.2 4 59.6 10.3 0.003
Number of lint warnings Yes 3505 4 876.2 135.5 2.2E−07
Testability

Random cases No 0.23 4 0.05 0.92 0.49
All-edge cases No 0.02 4 0.005 1.70 0.24
Category-partition cases No 0.04 4 0.01 0.90 0.50

Conclusion validity is possessed by an experiment if there are no issues ‘affecting the ability to
draw the correct conclusion about relations between the treatment and the outcome of an experiment
[45].’ Owing to the small number of observations, the power of the statistical test may increase
the risk that an erroneous conclusion is drawn. Also, if one views each data set as a separate
investigation, the significance level increases, meaning that significant results may be discovered
due to chance.

5.2. Analysis by programmer

Facets (such as number of comments and average occurrence of operators) were deemed to be
distinguishing if the ANOVA for that facet showed statistical significance for a programmer (that
is, the p-value was 0.05 or less). The facets that were found to be distinguishing are listed in
boldface in Table IV. The abbreviations used in the table are Sum of Squares (SS), degrees of
freedom (DF), mean squares (MS), F-value (F), and p-value (p).

Based on Table IV, it appears that five measures correlate with the author of a program, with
a sixth measurement, average occurrence of operands, having borderline correlation with a p of
0.06 (recall that a p-value of 0.05 or less indicates statistical significance):

(1) average occurrence of operators,
(2) average occurrence of constructs,
(3) number of unique constructs,
(4) number of unique operands,
(5) number of lint warnings, and
(6) average occurrence of operands (borderline).

Number of unique constructs is not a ‘normalized’ measure because a very large, complex
program will have more constructs than a very small, simple program. It should be dismissed in
favor of the ‘normalized’ facet average occurrence of constructs. Further, it is felt that using a
single facet to determine the author of a program is less likely to have external validity. Therefore,
a discriminator that combines several facets is preferred over a single facet.

The six potential discriminating facets listed above were examined further. Various combinations
of the facets were built (e.g. product of the number of lint warnings and average occurrence of
constructs). The combined facets were then compared with each of the values for a particular
programmer and program. The combination was rejected if visual examination of the data did not
indicate any correlation. If the combination appeared to have some merit (it seemed to correlate
well with the data for at least two programmers), it was examined further.

5.2.1. A discriminator for identifying programmers. By applying the process described above, it
appears that three static measures have the potential for determining the author of a program: (1)
average occurrence of operands, (2) average occurrence of operators, and (3) average occurrence
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of constructs. A number of methods for combining the factors were considered. One idea considered
was to define and calculate the ‘average deviation,’ by computing the facet values for a programmer,
then computing the value for each facet on the program, and averaging the ratio of the program’s
value over the programmer’s value for all the facets. Although this measure was logically appealing,
when applied to the data, the results were very unsatisfactory.

Owing to these shortcomings, a single value discriminator was selected. Further, it was decided
to use the product of the factors. Multiplying measures to build discriminators or ‘identifiers’ is
common. In information retrieval and requirements tracing, term frequency and inverse document
frequency are multiplied to build a similarity measure used to see if a document is similar to a
posed query. The Maintainability Index (MI) [46] multiplies a number of static measures such as
average extended cyclomatic complexity per module [22], average count of lines of code (LOC)
per module, and average percent of lines of comments per module to build a measure of the
maintainability of a piece of code. The unit of this composite measure is not specified by Welker
and Oman. However, prevalent use of MI by practitioners and researchers alike indicate that the
lack of a specified unit has not deterred its use or importance. Component measures have also been
used successfully as discriminators. For example, logistic regression models that multiply various
variables and their coefficients are used to discriminate modules that are fault prone [31, 47].
Multiple and simple regression models multiply measures (often of varying units). The effect is
that the resulting discriminators will be ‘spread’ further apart than if addition, subtraction, or some
other operation was applied.

The result of this analysis is the following equation, called the Nicholson discriminator¶¶ . The
Nicholson discriminator is the product of the aforementioned factors:

Na = f 1∗( f 22)∗ f 3

where Na is the target Nicholson discriminator for programmer a, f 1 is the average occurrence
of operands, f 2 is the average occurrence of operators, and f 3 is the average occurrence of
constructs. The average occurrence of operators is squared because it had the lowest p-value of
the three.

Using the mean values obtained for each programmer, the target Na for each programmer is:

N1 = 1772.8

N2 = 93.9

N3 = 1149.8

N4 = 374.6

N5 = 436.5

Closer examination of the target Na made it clear that a single value would not work well for
the look-up table. Using an increment of + and −5% of Na , a range of Na values were calculated
for each programmer (subtract 5% from the value for the low end of the range, add 5% to the value
for the high end). The increment can be expected to vary based on the number of programmers
being distinguished. Additional evaluation is required to gain more general understanding about
the increment. The ranges for target Na values are shown below:

Programmer1 : Range of 1684.2 through 1861.4

Programmer2 : Range of 89.2 through 98.6

Programmer3 : Range of 1092.3 through 1207.3

Programmer4 : Range of 355.9 through 393.3

Programmer5 : Range of 414.7 through 458.3

¶¶The Nicholsons (brother and sister) worked for Newport News Shipbuilding in the ‘30 s and ‘40 s. Part of their job was
to determine if ships were seaworthy, based on several pieces of data.
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To truly validate these ranges, additional programs written by the same programmers need to be
evaluated. Thus, these data should be considered preliminary and inconclusive, but nevertheless
quite interesting as a starting point.

Note that all the programmers have mutually exclusive ranges, although the range values for
programmers 4 and 5 are close (programmer 4’s high end of 393.3 and programmer 5’s low end
of 414.7). It could be possible, based on the limited data of these experiments, that facets can be
used to pinpoint individual programmers. It is also possible that the close ranges of programmers
4 and 5 could cause problems for the method.

5.2.2. A second data set. To further examine the validity of this work, programs from the
networking data set described in Section 4.4 were chosen. The ranges for target Na were calculated
and nine of the 15 were unique ranges (they did not overlap with the five programmer ranges nor
with each other). Of the six that overlapped, three were overlapping only slightly (for example,
one student’s Na lower bound overlapped with programmer 3’s upper bound, but by less than 5%).
It could be possible that facets can be used to identify categories of programmers as opposed to
pinpointing individual programmers. This is still a useful finding, if Quality Assurance methods
can be shown to work better for certain types of programmers. That is, it might not be possible
to take an anonymous program and report that ‘programmer X’ was the author, but it might be
possible to report that ‘a category 1 programmer’ was the author (where some relatively small
number of categories has been defined). This would also be useful in narrowing down suspected
authors of malicious or virus source code as well as in plagiarism detection.

5.3. Analysis by program

The ANOVA showed no evidence of a difference among the measures for the programs Mid and
Trityp. For example, the p-value for average occurrence of operands was 0.35. However, there
was a statistically significant difference (p-value less than 0.05) for three measures for program
Find: average occurrence of operands; average occurrence of operators; and average occurrence
of constructs.

The testability facet was not found to be distinguishing; the testability results were very similar
for all of the programs. Figures 3–5 present the testability results for the three programs (these can
also be found in Table III). The three test techniques listed left to right are random (shown as rand),
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Figure 3. Testability results for Program Mid.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2009)
DOI: 10.1002/stvr



J. H. HAYES AND J. OFFUTT

0

0.2

0.4

0.6

0.8

1

1.2

trityp/rand trityp/ae trityp/catp

Te
st
ab

ili
ty

pgmr1

pgmr3
pgmr4
pgmr5

Figure 4. Testability results for Program Trityp.

all edge (shown as ae), and category partition (shown as catp). In Figure 3, for example, it can be
seen that all programmer versions of Mid, when executed using random test cases (mid/rand), had
testability scores of 0.04. As can be seen, the programs written by programmer 1 often had a higher
testability score than that of the programs of other programmers, regardless of the test technique.
For example, Figure 3 shows that programmer 1’s version of Mid tested with category-partition test
cases had higher testability than the versions of Mid written by the other programmers. Figure 4
shows that programmer 1’s version of Trityp also had a higher testability score than other versions
of Trityp, for both random and category-partition testing. Figure 5 shows that programmer 4’s
version of Find had higher testability scores for random and all edge testing than the versions of
Find written by other programmers.

It should be noted that many of the programs had 0.04 as their testability score, regardless of
the programmer or the test technique. Although it is not clear why this value showed up so often,
three possible explanations are: (1) test techniques do not work better for certain programming
styles than for others, (2) testability does not capture the desired aspect, and (3) coincidence. In
the future studies, the defect detection effectiveness of various test techniques when applied to
programs written by distinguishable authors will be examined.

In examining order of development, one programmer did not report the order of program writing.
One programmer wrote Mid last, one programmer wrote Find last, and one programmer wrote
Trityp last. One programmer reported working on bits and pieces of Find while finishing the
other two programs, claiming that the order was ‘difficult to say.’ Based on this varied order
of development, it is believed that the order did not cause the differences between individual
programmers.

5.4. Hypothesis results

The general hypothesis for these experiments (the consistent programmer hypothesis) is that one
or more characteristics exist for a program that can recognize the author. Evidence has been
presented in Section 5.2 to support the notion that characteristics exist to identify the author of
a program. However, the other aspect of the consistent programmer hypothesis, that some testing
techniques are better suited to code developed by some programmers than others, was not supported
experimentally. Therefore, the general hypothesis is not supported by the experiments.
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Figure 5. Testability results for Program Find.

Some of the specific hypotheses were supported and some were not. The results are listed
below:

1. The dynamic measure of testability could not be correlated to a particular programmer.
2. The static measure of number of semi-colons per comment did vary for several individual

programmers, but the hypothesis was not supported overall.
3. The static measure of average occurrence of operands is correlated with the individual

programmer.
4. The static measure of average occurrence of operators is correlated with the individual

programmer.
5. The static measure of average occurrence of constructs is correlated with the individual

programmer.
6. The static measure of average occurrence of constants was not found to vary greatly based

on programmer.
7. The static measure of number of unique constructs is correlated with the individual

programmer.
8. The static measure of number of unique operands is correlated with the individual

programmer.
9. The static measure of number of lint warnings is correlated with the individual programmer.

To examine the role of size within the measure set, a subsequent PCA [11] of the original data
set was performed. This analysis identifies domains or components of interest by showing the
sources of variance in a given data set. The PCA showed that the measures do not all correlate
with size. Table V shows the correlation between each identified principal component (called
simply ‘component’) and the original measures (also called features in PCA) [43]. The largest
values (when examining the absolute value) for a measure indicate the strongest relationship with a
component (and are bolded in Table V). Once the components have been identified, the relationships
between measures and components must be examined. Based on this, the components are labeled or
categorized.

The first component shown in Table V consists of lines of program code, Halstead’s N (length),
Halstead’s N1, Halstead’s N2 (N1 and N2 are summed to give N), Halstead’s n (vocabulary),
n2, V (Halstead’s volume), B (Halstead’s estimated number of bugs), E (Halstead’s effort),
T (Halstead’s time), average occurrence of operators, and H (Halstead’s predicted length) as shown
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Table V. Rotated components of original data set—Five components selected.

Component

1 2 3 4 5

V(G) 0.318 0.229 0.179 0.186 0.864
Max V(G) 0.096 −0.309 0.231 −0.045 0.886
LOC phy 0.687 0.682 0.152 0.058 −0.031
LOC pro 0.806 0.488 0.236 0.021 0.111
LOC bl 0.488 0.638 0.043 0.109 −0.319
LOC com 0.462 0.856 −0.040 0.074 −0.093
N 0.966 0.168 0.117 0.122 0.096
N1 0.947 0.180 0.167 0.114 0.147
N2 0.973 0.154 0.065 0.128 0.042
n 0.952 0.170 −0.169 0.161 0.072
n1 0.694 0.010 −0.163 0.675 0.075
n2 0.961 0.206 −0.159 −0.003 0.066
V 0.974 0.166 0.068 0.106 0.078
B 0.934 0.106 0.120 0.304 0.060
D 0.647 −0.061 0.195 0.719 0.053
E 0.950 0.111 0.104 0.224 0.023
L −0.548 −0.009 −0.227 −0.757 −0.123
T 0.950 0.111 0.104 0.224 0.023
Avg occ. 0.318 −0.138 0.695 0.577 0.058
opds
Avg occ. 0.822 0.231 0.387 −0.213 0.220
ops
H 0.959 0.168 −0.167 0.127 0.063
H–N 0.032 0.000 0.957 0.039 0.227
Comm/ 0.162 0.923 −0.143 −0.034 −0.024
locphy
Comm/ 0.101 0.954 −0.189 −0.008 −0.059
locpro
n2/locphy 0.111 −0.847 −0.500 −0.037 −0.056
n2/locpro 0.078 −0.630 −0.684 0.011 −0.227
n1/locphy −0.311 −0.762 −0.295 0.431 −0.107
n1/locpro −0.396 −0.628 −0.351 0.491 −0.219

by the relatively high values of these items in the table (in the [−0.7;+0.7] range). The longer the
source code, the higher the count of each of these measures. Hence, this can be seen as a component
that represents the size or length of a program. The second component includes the number of
comments, comments per physical lines of code, comments per program lines of code, number
of unique operands per physical lines of code, and number of unique operators per physical lines
of code. The first three measures, number of comments, comments per physical lines of code, and
comments per program lines of code, are clearly related to comments. The latter two items, number
of unique operands per physical lines of code, and number of unique operators per physical lines
of code, can be seen to tie to understandability also [43]. That is, the number of unique operators
and operands drive the number of mental ‘lookups’ a programmer must perform when maintaining
code. Thus, it appears that this second component ties to understandability.

The third component includes only the difference between estimated and actual length (H–N).
We label this component ‘error of predicted length.’ The fourth component contains D (Halstead’s
difficulty) and L (Halstead’s program level). L is the relationship between Program Volume and
Potential Volume. Only the most clear algorithm can have a level of unity. D is 1/L. A program
grows more difficult as its level decreases. These both deal with difficulty. The final component
includes McCabe’s cyclomatic complexity and maximum cyclomatic complexity. These both deal
with control flow [43]. The components are hence identified as follows:

• Component 1—size/length
• Component 2—understandability
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Table VI. Principal components analysis—eigenvalues of the correlation matrix—original data set.

Eigenvalue % of variance Cumulative (%)

Component 1 15.615 55.768 55.768
Component 2 5.246 18.734 74.502
Component 3 3.240 11.570 86.072
Component 4 1.789 6.388 92.460
Component 5 1.040 3.714 96.174

Table VII. Distinguishing facets by programmer—networking data set.

Programmer: Features Distinguishing? SS DF MS F p

Number of program lines No 136 106.40 14 9721.88 1.03 0.44
Number of unique operators per program line No 0.07 14 0.005 1.06 0.40
Number of unique operands per program line No 0.61 14 0.04 0.61 0.83
Average occurrence of operators No 1131.51 14 80.82 0.85 0.60
Average occurrence of operands No 278.85 14 19.91 0.67 0.78
Number of comments per program line Yes 0.75 14 0.05 2.63 0.006

• Component 3—error of predicted length
• Component 4—difficulty
• Component 5—control flow.

The eigenvalues of the correlation matrix from Table V are shown in Table VI. Only three
components are needed to explain at least 86% of the overall variance. The principal factor method
(with prior communality estimates of one followed by a varimax-rotation) is selected to establish
the factor model for interpretation [48]. This adjustment gives weight to the highly correlated
variables within each factor and lesser weight to any remaining variables [48]. That is, each variable
will be highly correlated to exactly one factor and not to others.

5.5. Results for networking data set

As shown in Table VII, the distinguishing feature identified in the networking data set was number
of comments per program line. The Sum of Squares was 0.75, the mean square was 0.05, the
F-value was 2.63, and the p-value was 0.006. Further analysis of the programs written by each
author and an attempt to identify the authors based on this feature failed to identify authors or
small sets of potential authors. The general hypothesis (static or dynamic facets of a program can
be identified and used to recognize a program author) was not supported. This study is presented
in detail in work by Huffman Hayes [43].

6. CONCLUSIONS AND FUTURE WORK

Experiments were undertaken to evaluate the general hypothesis that one or more facets (static or
dynamic) exist for a program such that the author, or a small set of potential authors, of the program
can be recognized, and that testing techniques correlate to programmers. A number of specific
hypotheses were posited for individual characteristics such as ‘the static measure of number of
unique operands is correlated with the individual programmer.’ The same three programs written
by five different professional programmers as well as four C programs written by 15 different
graduate students were examined. Support was not found for the general hypothesis that testing
techniques correlate to programmer voice. This may have been due to the testability measure that
was used to evaluate the techniques. As explained in Section 5.3, the testability values were often
identical (0.04) regardless of the program, the programmer, or the testing technique applied. It is
not clear that this measure supports the research. Therefore, for future work, the defect detection
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effectiveness of various test techniques will be examined rather than the testability. Evidence was
found that the professional programmers exhibit voice in the professional programmer data set, as
shown by the strong correlation between five facets and programmer as well as weaker correlation
with a sixth facet. In the networking data set, strong correlation between one facet and programmer
was found. Further work is required, particularly with a larger sample.

The results are encouraging. A number of new questions arose from this work. First, can an
author be identified if he/she has modified someone else’s code? There have been recent cases
where virus writers copy an existing virus and make changes to it. There are certainly many cases
where students copy wholesale sections of code from other students. How much code must be
written by an individual for their ‘voice’ to be evident? If an individual wrote 80% of the code,
can that individual be identified? Also, it is not clear how this technique might be used to evaluate
group software projects where several students have developed an application. It may be possible
to approach this problem by focusing on modules as that is typically the level at which work is
shared by programmers.

The authors also plan to investigate how early a programmer develops voice. More detailed
facets of testing techniques and inspection techniques are being examined to ensure that a lack
of construct validity did not account for the lack of correlation. Section 4.3.2 used static analysis
to count the number of operators, operands, and other program features used. It is possible that
a finer grained count, such as which specific operators were used, could lead to a more effective
way to identify programmers. This would be an excellent topic for future work. An additional
follow-up study could be to investigate whether factors such as experience, age, education, etc.
affect these results.
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