
Temporal Action Language (TAL): A Controlled
Language for Consistency Checking of Natural

Language Temporal Requirements
(Preliminary results)

Wenbin Li, Jane Huffman Hayes, and Miros law Truszczyński

University of Kentucky, USA
wenbin.li@uky.edu hayes,mirek@cs.uky.edu

Abstract. We introduce Temporal Action Language (TAL). We design
TAL as a key component of our approach that aims to semi-automate
the process of consistency checking of natural language temporal require-
ments. Analysts can use TAL to express temporal requirements precisely
and unambiguously. We describe the syntax and semantics of TAL and
illustrate how to use TAL to represent temporal requirements.

1 Introduction

Requirements such as “a node should re-identify itself within 10 seconds after
making a connection to the server or the server will drop the connection in 2
seconds” describe temporal dependencies among events. Such temporal require-
ments are common in software projects. Temporal requirements may be inconsis-
tent. Detecting inconsistencies of temporal requirements is essential and should
take place before the design phase so that the cost of revisions can be mini-
mized. Automating or partially automating the process is crucial as the task,
when performed manually, is time consuming and error-prone.

There has been much research on formal methods for automating the process
of requirements analysis [7, 9, 8, 4]. Analyzing temporal constraints automatically
requires that they be expressed in a low-level formal language for which good
automated reasoning tools are available (such as temporal logic [13] and timed
automata [1], which have been used with success to analyze real-time systems [2,
12]). Researchers typically assume that formal representations are already given
and focus on methods and tools for analyzing them. Our approach is different
as it assumes the requirements are stated in natural language, and so addresses
the needs of the most typical scenario when software requirements are given as
a free-flow narrative (cf. the example above).

Our main contribution is a controlled language called Temporal Action Lan-
guage (TAL). We propose it as a key component of a process aiming to minimize
the time and effort required to check the consistency of temporal requirements
specified in natural language. Translating such requirements faithfully into low-
level formal languages is difficult due to the significant “distance” between natu-
ral language text and formal expressions in logic, ambiguity common in natural



language descriptions of requirements, importance of implicit information, and
insufficient formal method background of analysts. We introduce TAL as a bridge
between natural language and the low-level target language used for reasoning.
This naturally leads to a two-stage process: (1) creating a TAL theory that de-
scribes the system and (2) detecting conflicts in the TAL theory. Each stage can
be further decomposed into multiple manageable tasks.

The first stage requires identifying temporal requirements; gathering domain
information; making relevant, shared (or commonsense) knowledge explicit; re-
moving ambiguity in requirements; and expressing them in TAL. Analyst involve-
ment in the first stage will be necessary. However, we believe natural language
processing (NLP) and information retrieval (IR) techniques can effectively assist
analysts in the task. The second stage consists of translating TAL theory into
low-level logic formalism and using its tools to reason about the TAL theory.
That stage can be fully automated.

We want to use TAL as an effective bridge between natural language and
a low-level logic, and we designed TAL with the following desiderata in mind.
First, the syntax of TAL must be close to that of natural language because
the readability of TAL is crucial to the effectiveness and efficiency of the first
stage. High readability significantly reduces the time and effort required to ver-
ify and validate the TAL theories generated in this stage. Second, theories in
TAL must have a well-defined semantics so that correct automated translations
of TAL theories into target languages are possible. Third, we want TAL to be
capable of specifying the temporal constraints that people may find in software
requirements. Specifically, we want TAL to model the prerequisites and effects
of actions, and the time bounds on which actions start and end. Although the
overall approach is still under development, we have collected anecdotal evi-
dence suggesting readability of TAL theories as well as feasibility of automating
translations of TAL theories into formal systems.

2 Temporal Action Language TAL

Syntax. We use TAL to specify temporal constraints on times when events
occur. Such events include the start and end of actions and the change of system
properties (fluents). We design TAL as an extension of Action Language AL [3]
which allows us to specify actions and fluents, but not temporal information.

A TAL theory is a triple (AD ,IC ,TC ) where AD is the set of action defini-
tions, IC is the set of initial constraints, and TC is the set of temporal constraints.
The action definitions describe the actions by specifying their prerequisites and
effects, all expressed as fluents (boolean properties). The syntax of AD is that
of AL. In particular, AD consists of expressions of the following form:

State constraint L if P (1)

Dynamic causal law A causes L if P (2)

Executability condition impossible A1, . . . , Ak if P (3)



where L and P are lists of fluents and their negations, and A,A1, . . . , Ak are
actions. State constraint (1) says that L holds (every fluent and the negation of
a fluent in L holds) in every state in which P holds (in the same sense as L).
Dynamic causal law (2) describes the effects of actions. Executability condition
(3) specifies the prerequisites of actions. For example:

connect(serA,nodeA) causes connected(nodeA, serA) if systemOn

says that executing the action connect(serA,nodeA) when the system is on re-
sults in nodeA and serA being connected, and

impossible identify(nodeA, serA) if ¬ connected(serA,nodeA)

specifies the prerequisite of the action identify(nodeA, serA).
The second component of a TAL theory, IC , consists of initial constraints

defining the initial state of the system. An initial constraint is an expression:
initially L , where L is a fluent.

The presence of the component TC in a TAL theory is the key feature that
distinguishes TAL from AL. TC specifies temporal information including tem-
poral constraints and action durations.

A duration specification is an expression: duration Act x unit, where Act
is an action, x is a positive number, and units refers to a time unit such as a
millisecond, second, or minute.

Temporal constraints describe temporal relationships among the times when
events occur. Temporal conditions are the basic component of temporal con-
straints. A temporal condition models the temporal relationship between the
occurrence time of two events. In TAL, each action Act is associated with two
prompts: commence Act and terminate Act, which represent starting and suc-
cessfully finishing action Act. In TAL one can relate two consecutive occurrences
of the same action to each other. To distinguish between them, TAL provides
the keywords previous and next. A temporal condition is of the form:

〈timeReference〉 @ 〈timeComparator〉 [〈timeModifier〉] 〈timeReference〉

The expression 〈timeReference〉 represents the occurrence time of the event. That
time can be startTime (the time when the system starts), prompt (the time
when the prompt occurs), a fluent, or its negation (the time when the fluent
starts or ceases being true). The expression 〈timeComparator〉 [〈timeModifier〉]
specifies the temporal relationship between these two time moments. In TAL,
we use <, ≤, =, ≥, or > for 〈timeComparator〉. The parameter timeModifier is
optional. It modifies the time t given by the second timeReference expression as
in “x seconds before t” or “x milliseconds after t,” where x > 0. For example,
in TAL, the temporal condition “serA drops the connection to nodeB 5 seconds
after it establishes a connection to nodeA” can be written as:

commence dropConn(serA,nodeB) @ = 5 seconds after
terminate estConn(serA,nodeA)

The basic form of a temporal constraint is:



if A1 and . . .and Ak, then B1 or . . .or Bm;

where A1, . . . , Ak and B1, . . . , Bm are temporal conditions or their negations
(temporal conditions can be viewed as special temporal constraints with k = 0
and m = 1). In TAL, one can express “if a connected node does not re-identify
itself to the server within 10 seconds after the connection is established, the server
shall drop the connection within 2 seconds” as:

if not terminate identify(nodeA, serA) @ ≤ 10 seconds after
terminate estConn(serA,nodeA),
then terminate dropConn(serA,nodeA) @ ≤ 2 seconds;

Semantics. We base the semantics of a TAL theory (AD , IC ,TC ) on a transi-
tion system TAD of the action description component AD . The use of transition
systems as the semantics of action language theories was proposed by Gelfond
and Lifschitz [6]. That approach applies also to AL [3]. In an AL transition sys-
tem, states are combinations of fluents and their negations. Arcs between states
are labeled with actions because AL assumes that only actions can cause the
system to change its state. Since TAL’s action description AD is in the syntax
of AL, we create the transition system TAD essentially in the same way as in
AL but with two modifications. First, the arcs in TAD are labeled with prompts.
This is because the prerequisites and effects of actions specified in AD can be
viewed as prerequisites of the corresponding commence prompts and effects
of the corresponding terminate prompts. Second, some arcs are labeled with
the term time as some fluents in TAL can change value simply because of time
passing (for instance, a message becomes “old” if it is in the queue for more than
20 seconds – no action is required for that).

A sequence 〈s0, pr0, s1, pr1, . . . , sx−1, prx−1, sx〉 is a path in a transition sys-
tem TAD if all si are states, all pri are prompts or time, s0 satisfies all initial
constraints, and if for each i = 0, . . . , x− 1, 〈si, pri, si+1〉 is a transition in TAD.
A path in TAD represents a scenario, the evolution of the state of the corre-
sponding system as the result of prompts (time) labeling the arcs, assuming we
disregard action durations and temporal constraints.

A path does not show when the events occur. We define a timed path as a se-
quence 〈s0, pr0, t0, s1, pr1, t1, . . . , sx−1, prx−1, tx−1, sx〉, where 〈s0, pr0, s1, pr1, . . . ,
sx−1, prx−1, sx〉 is a path and for every i = 0, . . . , x− 1, ti < ti+1. The times ti
are the times when the system is to progress from state si to si+1. The question
of consistency of temporal requirements is that of the existence of arbitrarily
long timed paths satisfying all temporal constraints in TC .

Let p be a timed path and t a time in the time range of p (not greater
than the time of the last state change). It is straightforward, albeit tedious, to
specify when B holds at time t on p. For instance, let B stand for prompt1 @ =
x seconds after prompt2. If the most recent occurrence of prompt1 before or
at t is at time t′ and at time t′ + x there is an occurrence of prompt2, then we
say that the condition holds at B. There are several such cases to cover. We
omit details due to space limits. Next, we define a temporal constraint to be
satisfied on p at time t if at least one temporal condition in the consequent of



C evaluates to true whenever all temporal conditions in the antecedent evaluate
to true (interpreting t as “now”). Finally, we say that a temporal constraint C
holds on a path p if C holds at every time t within the range of p.

Consistency Checking. Consistency of a TAL theory means the existence
of arbitrarily long timed paths. It guarantees that there is no inconsistency
in temporal requirements. A weaker notion of bounded consistency means the
existence of a timed path with a given bound on its time range. It guarantees
that no inconsistency in temporal requirements can exhibit itself prior to the
bound. The larger the bound, the more accurately the notion approximates that
of consistency. Other interesting questions are whether an event can (or will)
occur within a given time bound, or whether a system can (will) satisfy a certain
property while running. Since TAL is a formal system, a promising approach to
decide (bounded) consistency and related questions is to develop translations to
low-level logic systems and use automated reasoning tools that are available for
them.

3 Validation

To date, we studied bounded consistency and experimented with translations of
the TAL representation of the problem of existence of a timed path of bounded
length into answer-set programming (ASP) [10, 11]. We selected ASP because it
is well suited for modeling search problems and has fast solvers [5]. We created
an example scenario with multiple temporal requirements and represented it
as a TAL theory. We manually translated the TAL theory into an answer-set
program. We used a solver, clingcon [5], to process it. We found that when the
requirements were consistent, clingcon returned at least one answer set that
represents a valid scenario. Upon modifying the requirements to make them
inconsistent, clingcon did not return any timed paths. The experiment shows
the feasibility of reasoning about consistency of temporal requirements given in
TAL by translating them to low-level target logics and then using automated
reasoning tools.

We also wrote sixteen natural language temporal requirements and their
corresponding TAL statements. We selected four people with various computer
science backgrounds, from working in industry for years as a requirements en-
gineer to having a bachelor’s degree in computer science. We briefly introduced
the syntax of TAL to them and asked them to rate the similarity in meaning of
the natural language statements and their formal TAL representations (we used
a scale from 0, completely different, to 5, exactly the same). The mean rating
for the sixteen pairs was 4.76. The result shows that the participants found TAL
statements to be unambiguous and easy to understand.

4 Discussion and Future Work

This paper presents the language TAL for specifying temporal requirements. It
extends AL by allowing users to specify temporal dependencies among events



using temporal conditions and constraints. The syntax of TAL is close to nat-
ural language and, based on anecdotal evidence, easy to follow. The semantics
are based on the concepts of transition systems and timed paths. Checking for
(in)consistency of temporal requirements is reduced to creating TAL expres-
sions from natural language requirements since, once the TAL representation is
available, it can be processed in a fully automated way.

Future work includes automating the translation from TAL to ASP and cre-
ating tools based on natural language processing and information retrieval to
assist analysts in generating TAL theory based on requirements given in natural
language. We will also study temporal logics and timed automata as possible
target formalisms. Finally, we will perform systematic experiments to validate
the scope and feasibility of the approach.

Acknowledgment

This work is funded in part by the National Science Foundation under NSF grant
CCF-0811140 and JPL grant 1401954.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126, 183–235 (1994)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. Logic-based artifi-

cial intelligence pp. 257–279 (2000)
4. Dutertre, B., Stavridou, V.: Formal requirements analysis of an avionics control

system. IEEE Transactions on Software Engineering SE 23, 267–278 (1997)
5. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. International

Conference on Logic Programming (ICLP) pp. 235–249 (2009)
6. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial

Intelligence (ETAI) 2, 193–210 (1998)
7. Heitmeyer, C.: Software cost reduction. In: Marciniak, J.J. (ed.) Encyclopedia of

Software Engineering. John Wiley & Sons, 2nd edn. (2002)
8. Klein, M.: An exception handling approach to enhancing consistency, completeness

and correctness in collaborative requirements capture. Concurrent Engineering Re-
search and Applications 5, 37–46 (1997)

9. Lamsweerde, A.V., Darimont, R., Letier, E.: Managing conflicts in goal-driven
requirements engineering. IEEE Transactions on Software Engineering 24(11), 908–
926 (1998)

10. Marek, V., Truszczynski, M.: Stable models and an alternative logic programming
paradigm. The Logic Programming Paradigm: a 25-Year Perspective pp. 375–398
(1999)

11. Niemela, I.: Logic programs with stable model semantics as a constraint paradigm.
Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)

12. Olderog, E.R., Dierks, H.: Real-Time Systems. CUP (2008)
13. Pnueli, A.: The temporal logic of programs. Proceedings of the 18th Annual Sym-

posium on Foundations of Computer Science (FOCS) pp. 46–57 (1977)


