
Expressing and Managing Network Policies for Emerging HPC
Systems

Sergio Rivera
University of Kentucky
Lexington, Kentucky
sergio@netlab.uky.edu

James Griffioen
University of Kentucky
Lexington, Kentucky
griff@netlab.uky.edu

Zongming Fei
University of Kentucky
Lexington, Kentucky
fei@netlab.uky.edu

Jane Huffman Hayes
University of Kentucky
Lexington, Kentucky
hayes@cs.uky.edu

ABSTRACT
Traditional high performance computing (HPC) centers that op-
erate a single large supercomputer cluster have not required so-
phisticated mechanisms to manage and enforce network policies.
Recently, HPC centers have expanded to support a wide range
of computational infrastructure, such as OpenStack-based private
clouds and Ceph object stores, each with its own unique characteris-
tics and network security requirements. Network security policies
are becoming more complex and harder to manage. To address
the challenge, this paper explores ways to define and manage the
new network policies required by emerging HPC systems. As the
first step, we identify the new types of policies that are required
and the technical capabilities needed to support them. We present
example policies and discuss ways to implement those policies us-
ing emerging programmable networks and intent-based networks.
We describe our initial work toward automatically converting hu-
man readable network policies into network configurations and
programmable network controllers that implement those policies
using business rule management systems.

CCS CONCEPTS
• Networks→ Network management; Programmable networks.

KEYWORDS
Network Policies, Software-Defined Networks, HPC Systems

ACM Reference Format:
Sergio Rivera, James Griffioen, Zongming Fei, and Jane HuffmanHayes. 2019.
Expressing and Managing Network Policies for Emerging HPC Systems.
In Practice and Experience in Advanced Research Computing (PEARC ’19),
July 28-August 1, 2019, Chicago, IL, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3332186.3333045

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7227-5/19/07. . . $15.00
https://doi.org/10.1145/3332186.3333045

1 INTRODUCTION
Any institution that operates a high performance computing (HPC)
center understands the importance of securing the network and
systems that comprise the HPC system. The level of security that
must be maintained depends on the institution’s security policies.
Historically, many institutions have defined relatively simple se-
curity policies for their HPC systems, policies that can usually be
implemented in straightforward ways. Generally speaking, users
are given accounts on the system and must authenticate themselves
using conventional methods (e.g., loginID/password or some sort
of two factor authentication). While a secure login/authorization
mechanism provides the base level security, most HPC systems look
to the network to provide additional levels of protection – particu-
larly from outside attacks – preventing network traffic that is not
policy compliant from traversing HPC networks. Institutions will
typically use a combination of firewalls and virtual private network
(VPN) technologies to ensure that only authorized users are able to
access the HPC network. In other words, users must first login to
the VPN network (or be connected to an internal campus network
that is allowed to access the HPC network), before they can even
attempt to login to the HPC computing system (see Figure 1).

Admin
Node C0 Cn

Compute
Nodes

Parallel FS

Data Network (Private)Infiniband
(Low-latency

Required)

Login
Node

Low Bandwidth
Control Network (Private)

SSH
DTN

Firewall / VPN

Internet
External

Researchers

Campus
 Network

Campus
Researchers

Figure 1: A typical HPC architecture

For example, a typical network security policy defined to protect
a campus’ HPC system might be “Access to the HPC network is

https://doi.org/10.1145/3332186.3333045
https://doi.org/10.1145/3332186.3333045

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Sergio Rivera, James Griffioen, Zongming Fei, and Jane Huffman Hayes

only allowed from machines on the campus network. To access the
HPC network from off campus, users must login to the campus VPN
service”. This policy is relatively easy to implement by assigning
internal (i.e., campus route-able) IP addresses to the HPC network
and setting up a VPN/Firewall at the Internet edge that does not
allow any incoming network traffic to the HPC network (except for
traffic coming in over an authenticated VPN connection). In general,
simple network policies like this have been sufficient to protect
HPC center supercomputer systems. Because the user workflow
involves logging in (via ssh) to the supercomputer and running (self-
contained) jobs on the cluster, a simple network policy that only
allows (ssh) remote login traffic to/from login nodes is sufficient
and easy to implement.

Unfortunately, simple policies based on VPN access can pose
a significant bottleneck to high-speed data transfers. As a result,
many HPC centers have modified their network policy to allow for
a Data Transfer Node (DTN) located outside the campus firewalls
in a Science DMZ [9]. The DTN node allows high-speed external
access to the HPC data storage system. In other words, the network
policy has been enhanced to include “To transfer data at high speed
from outside campus, users can transfer data to/from the DTN node”.
This addition to the policy can be implemented in a straightfor-
ward manner by directly connecting the DTN node to the storage
network. However, because the DTN is not protected by a fire-
wall and/or intrusion detection/prevention system (IDS/IDP), it is
susceptible to attacks. Consequently, the DTN node and OS must
be “locked down” to the greatest extent possible and continuously
monitored for possible attacks to ensure the HPC storage system is
not compromised.

In recent years, HPC centers have begun expanding their services
beyond just operating a large supercomputer cluster. In particu-
lar, they have started to support a wide range of computational
infrastructure each with its own unique characteristics and net-
work security requirements. As a result, network security policies
are becoming more complex and require more advanced tools and
mechanisms to define and manage the network security policy.
For example, private clouds based on technologies such as Open-
Stack [20] are becoming a common place. These systems not only
require network policies for the underlying hardware, but also for
the virtual systems that run on the OpenStack cloud. Because they
offer many different access methods and protocols, the network
policies must define which ones are, and are not, allowed (e.g.,
VNC to VMs is allowed, but RDP is not allowed; or ssh is only
allowed through network proxies). In addition, storage systems
have become complex systems in and of themselves, consisting of
multiple networks each with their own network policies. Special-
ized frameworks that support stream processing, map-reduce, time
series database, and other forms of distributed processing [2] are
also being deployed, each requiring its own set of network polices.
Even HPC resources are evolving with the emergence of new con-
trol software designed to leverage advances in containerization. In
short, these emerging environments require more advanced, finer-
grained, and dynamic network policies that make it more difficult
for system administrators to manage the network security of the
system.

As an example, consider a Ceph object store [6] which can be
accessed via an S3 interface, a block device interface, or a file sys-
tem interface. HPC administrators may want to authorize some
(privileged) machines on the campus network to be able to use
the file system interface, or they may want to allow an OpenStack
system to be able to use the block storage interface. Perhaps they
would like to allow any user anywhere (inside or outside the cam-
pus network) to be able to access the S3 interface. Depending on
the desired security policy, the network can be configured to ensure
only policy compliant traffic is allowed on the network. Similarly,
consider an OpenStack system where the system administrators
want to prohibit VNC [21] access to VMs, and instead want to only
support encrypted remote access protocols like the NX protocol [19]
used by NoMachine [18]. In this case, the network should block all
VNC traffic while allowing NX traffic to OpenStack VMs. While
mechanisms may exist within the operating system or OpenStack
to block these types of traffic, the goal of a network policy is to
prevent unwanted traffic from entering or traversing the network
at all. This becomes particularly important when users have the
ability to modify the operating system or OpenStack settings – one
of the “features” of cloud technologies. In short, emerging technolo-
gies require more complex network policies and more sophisticated
network infrastructure to implement those policies.

To address these challenges, we have been exploring ways to
define and manage the new network policies required by emerging
HPC systems. A first step in this process is understanding the new
types of policies that are required and what technical capabilities
will be required to support them. Having identified the types of
policies that are needed, we have also begun to look at ways for HPC
system administrators to define policies and effectively manage the
complex set of policies needed to operate an HPC system.

In this paper, we identify features of networks found in new
types of computational systems being deployed by HPC centers,
and discuss the types of network policies needed to manage these
networks. We present example policies and discuss ways to im-
plement those policies using emerging programmable networks
and intent-based networks. We also briefly discuss our initial work
toward automatically converting human readable network policies
into network configurations and programmable network controllers
that implement those policies using business rule management sys-
tems (BRMS).

The paper is organized as follows. Section 2 discusses the tech-
nologies used to dynamically enforce network policies in research
environments. We give examples to show security policies for HPC
systems are more complicated in Section 3. Section 4 presents our
proposed method for specifying network policies for HPC systems
and enforcing the policies by automatically translating these pol-
icy statements into SDN rules implemented in switches. Lastly,
Section 5 concludes the paper.

2 MANAGING NETWORK POLICIES
The increasing complexity of HPC resources and the need for finer-
grained protection calls for more advanced network policy mecha-
nisms. The following briefly discusses recent advances in network
management capabilities that can be used to implement the types

Expressing and Managing Network Policies for Emerging HPC Systems PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

of complex network management policies require by today’s HPC
systems.

2.1 Intent-based Networks
Recent advances in machine learning combined with the ability to
collect and process large amounts of network configuration and
telemetry data has given rise to so-called intent-based networking
(IBN) systems [5, 10]. The idea behind intent-based networking is
that network administrators should only have to specify what they
want the network to do or how they want the network to be pro-
tected and then let the network figure out how to best configure the
underlying networking devices to achieve that intent. Several main-
stream as well as startup network vendors now support some form
of IBN including Cisco [7], Juniper [14], Big Switch [4], Apstra [3],
and others [17].

Sometimes referred to as self-driving networks, these networks
are all based on the concept of a (logically) centralized control
system (we will call it a “controller” but each vendor has its own ter-
minology) that interacts with and controls all routers and switches
in the network. These controllers monitor the network, collecting
device configurations and state, as well as performance information,
traffic logs, etc, onwhich they can run analytics software or learning
algorithms to understand the network, predict changes and adapt
to user behaviors without the intervention of a network operator
beyond the specification of her initial intent [12]. This self-adaption
is achieved through the controller by pushing out device-specific
configurations or control instructions to every router/switch in
the network so that the intent of the network administrator is
achieved (and/or optimized). Because these systems are able to con-
trol all the devices in the network (not just at the edge – e.g., at a
firewall), they can deploy fine-grained policies all throughout the
network. In cases where the IBN is integrated with the network
login/authentication service (e.g., Cisco’s Identity Service Engine
(ISE)), the system may even be able to define policies on a per-user
basis.

Network Operating System
(Controller)

....

Southbound Interface

Northbound Interface

Network
Policies

Data
Plane

Figure 2: SDN and IBN architecture. Both are based on the
concept of a controller responsible for the behavior of all
nodes in the network

2.2 Programmable Networks
While a rich set of tools and applications have been developed in
recent years to simplify traditionally complex and expensive tasks,
computer networks have not evolved at the same pace. For the
most part, network infrastructures still heavily rely on the inter-
connection of distributed devices that decide how to route packets
in their network independently from each other based on infor-
mation exchanged with neighbor nodes. Emerging workflows that
use newer computing technologies such as virtualization, big data
processing, or machine learning, require the network infrastructure
to dynamically adapt to provide optimal results. Such specialized
workflows typically lead to a substantive increase in the complexity
of the configuration of network devices and a raise in the capital
and operational expenditures incurred to manage the network.

To cope with these difficulties, research environments have
started to adopt newer network architectures (e.g., SDN) that allow
engineers to re-program the network via software. These types
of networks are often called Programmable Networks. In a pro-
grammable network, network devices (e.g., switches, routers) are
dynamically reconfigured/modified by a logically-centralized en-
tity called controller or Network Operating System that interacts
with these devices using well-defined (standardized) protocols re-
sembling the way traditional operating systems interact with the
internals of a machine (e.g., memory, NICs, I/O, etc).

Figure 2 shows an example of the overall SDN and IBN archi-
tecture where the forwarding plane is separated from the decision
plane. Specifically, network devices process network traffic based on
the decisions made by the controller which in turn are determined
by network management software (i.e., applications) that leverage
the global view of the network discovered by the controller as one
cohesive system. We consider that programmability of network
infrastructures opens up opportunities to develop systems that can
accurately influence via network policies the allowable behaviors
among users and applications, and the multiple components present
in today’s advance research computing environments.

3 COMPLEX ENVIRONMENTS AND POLICIES
Conventional HPC supercomputers, as shown in Figure 1, have
limited ingress and egress points which makes them easy to protect.
From a network security perspective, the campus network is directly
attached to the login node, allowing any on-campus user send traffic
to the supercomputer. Similarly, any user with VPN access to the
campus can send traffic to the supercomputer. Moreover, any user
on the Internet can send traffic to the DTN node. All of these traffic
avenues represent potential attack vectors – attack vectors that
HPC centers have, for the most part, not been concerned about.
The potential attack vectors for the types of systems that are now
being deployed in HPC centers are substantially different.

Consider a Ceph Object Storage System [6]. Unlike an HPC en-
vironment where the key resources (compute nodes) only reside
on private, special-purpose, hidden networks (i.e., the private in-
finiband data network and the private control network), the key re-
sources in a Ceph Object Store, namely the Object Storage Daemons
(OSDs) and Object Storage Monitors (OSMs), could be connected
to a public general-purpose network (like the campus network).

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Sergio Rivera, James Griffioen, Zongming Fei, and Jane Huffman Hayes

Monitor OSD0 OSDn

Cluster Network
(Optional)

Public
(Campus Network)

Ceph
FS

Block Device
(RBD) RADOS GW

Campus
Researchers

(a)

Monitor OSD0 OSDn

10 Gbps+ Cluster Network
(Private)

Ceph Network

Ceph
FS

Block Device
(RBD) RADOS GW

Campus Network

Campus
Researchers

Host A
(Mount block device)

Host B
(Mount file

system)

Firewall / VPN

Internet
Remote
Researchers

SDN Network
(High-Speed)

Science DMZ
Researchers

O
nly flow

s initiated
from

 inside

Flows picked-off
Using OpenFlow

(b)

Figure 3: Basic and conceptual network architecture of Ceph

As shown in Figure 3 a, it is possible to connect all key Ceph ser-
vices to the campus (public) network. In particular, the OSDs are
responsible for storing objects and perform replication and recov-
ery tasks, while the OSMs manage cluster membership and state.
In addition, web services such as a RADOS gateway (RADOSGW)
act as proxies that translate requests to store/retrieve data (e.g., S3
requests [1]) from user machines into Ceph-protocol messages sent
to the OSDs and OSMs. Other services include a RADOS block de-
vice storage service (RBD) and a Ceph File System (CephFS), which
ideally should only be reachable by machines with the privilege
to mount RBD devices or CephFS file systems. The Ceph docu-
mentation recommends creating an additional high-speed special
network, called the cluster network, to interconnect all the OSDs
and improve replication and recovery speeds but this is not required.
Because Ceph components are not on a hidden private network
like HPC components, they are not automatically protected like
HPC components, and thus require additional network security
mechanisms to protect against attack.

To address this problem, one could deploy a Ceph system as
shown in Figure 3b with additional networks (or VLANs) used
to separate traffic, placing OSDs, OSMs, and RADOS servers on a
distinct network. However, this still does not fully address the policy
concerns. For example, it does not prohibit unauthorized hosts on
the campus network from reaching (attacking) RADOS servers.

Ideally, the network policy would only allow authorized CephFS
clients to reach the CephFS server, and only authorized hosts to
reach RDB block devices. Using programmable networks or intent-
based networks, it is possible to deploy the fine-grained network
policies needed to only allow reachability from authorized hosts,
not the entire campus network (which may include all wireless
devices on campus as well).

At the University of Kentucky, our Ceph systems are also con-
nected to our OpenFlow-enabled SDN network (see Figure 3b)
which functions as a super-configurable (i.e., programmable) Sci-
ence DMZ. This allows us to dynamically create flows from Ceph
to the Internet that by-pass the campus firewalls [11]. Supporting
this type of service requires even more complex network policies –
namely policies that allow high-speed flows to be set up between
our Ceph system and certain hosts (IP addresses) in the Internet.
Again, such policies can be enabled and supported through the use
of programmable or intent-based mechanisms.

Network Storage Compute

Private Network
(Optional)

Public
(Campus Network)

Campus
Researchers

Controller Dashboard

(a)

Private Network (Management, Storage, Overlay, etc)

Campus Network

Campus
Researchers

Firewall / VPN

Remote
Researchers

SDN Network
(High-Speed)

Science DMZ
Researchers

O
nly flow

s initiated
from

 inside

Flows picked-off
Using OpenFlow

Compute

Storage Network

OpenStack Virtual Networks
(Dynamic)

Controller Dashboard

Internet

Provider

Networks (VLANs)

OpenStack APIs

(b)

Figure 4: Basic and conceptual network architecture of
OpenStack

As another example, consider Figure 4 which illustrates the
architecture of an OpenStack system. Figure 4a illustrates a ba-
sic OpenStack network that, like Ceph, does not depend on any
special-purpose, private, hidden, networks, but rather works well
with general purpose public network technologies (like a campus

Expressing and Managing Network Policies for Emerging HPC Systems PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

network). Like Ceph, OpenStack recommends deploying a private
management network used to provision and control the OpenStack
components. In the absence of physical network separation (or
virtual network separation via VLANs), any machine on campus
is able to reach/attack any component of the OpenStack System,
potentially including VMs deployed and managed by users. Fig-
ure 4b illustrates a potential configuration that addresses some
of the issues by removing key OpenStack components from the
campus (public) network and making them only accessible via the
management network. It also adds the ability to create independent
external “provider” networks that ensure the traffic from different
VMs is isolated to the appropriate VLAN. Deploying different phys-
ical networks (or VLANs) aids with OpenStack network security,
but does not necessarily support the fine-grained network security
policies desired or required. Like Ceph, such policies can be enabled
and supported through the use of programmable or intent-based
mechanisms.

It should be noted that the physically separate networks shown
in Figure 3 and Figure 4 could also be implemented using pro-
grammable networks or intent-based networks. In other words, by
moving to these types of programmable solutions, it is possible to
implement both fine-grained network security and security that
historically has been implemented via physical or VLAN partition-
ing.

3.1 Example Ceph/OpenStack Policies
Given the ability to program network security policies into the
network or to specify network policies using intent-specifications,
one can imagine creating a variety of fine-grained, dynamic, time-
dependent network security policies to protect these new types of
HPC resources. Example network security polices/intents for Ceph
and OpenStack systems include things such as:

• OSDs and OSMs should only be reachable by RADOS servers
• OpenStack Compute and Storage Nodes should only be
reachable by the OpenStack Controller and OpenStack Net-
work Nodes.

• The Ceph RDB server can only be accessed by the OpenStack
Controller

• The Ceph CephFS server can be mounted by VMs on the
OpenStack compute nodes

• User-created OpenStack VMs can be attached to the SDN
network (for high-speed data transfers)

• The OpenStack VMs should only be accessible from campus
or the Internet via ssh

• The OpenStack VM displays should only be accessible via
VNC

• OpenStack VMs should only have access to the campus net-
work

• OpenStack VMs should only have access to the RADOSGW
• The Ceph RADOSGW should only be accessible via the SDN
network from midnight to 7am

In short, one can imagine any number of fine-grained policies
that may be applied to these new and emerging HPC center re-
sources – policies that are more complex and sophisticated and will
require advanced networking capabilities such as programmable
networks or intent-based networking to achieve.

4 SPECIFYING NETWORK POLICIES
Expressing network policies is a critical task for the appropriate
management of a network. Even though there have been efforts to
raise levels of abstraction, policies are typically expressed in terms
of technical expressions or jargon that is difficult to understand, and
more importantly, challenging to verify. Existing network policy
mechanisms range across traditional low-level, device-specific CLI
commands, to network programming languages [8, 13, 15, 22], to
interactive full-fledged dashboards developed by network vendors
to simplify the management of their proprietary equipment. Albeit
usable, all these tools still require the specification of low-level net-
work details such as VLAN numbers, IP addresses or port numbers.
Worse, in the case of network programming languages, operators
must learn non-standard programming language constructs that
are hard to understand for inexperienced developers that are used
to express intents via CLI commends.

In an attempt to make network policies more comprehensible
(human readable) and verifiable—i.e., the intended policy is what ac-
tually was implemented in the network equipment—we have begun
to develop a system that allows network operators to specify access
policies in a format that is (reasonably) human readable. Moreover,
given a policy statement, it can be automatically translated into
network infrastructure instructions (e.g. network configurations,
OpenFlow rules) that ensure the policy is correctly enforced. Our
approach leverages practices found in businesses and corporations
to express their policies via Business Rule-based Management Sys-
tems (BRMS). Such systems not only automate the enforcement
of policies on products based on different conditions and external
events, but provide mechanisms to write policies in a human read-
able format that hides the complexities of the technicalities found
on the source code that would enforce any given policy.

In the following, we describe how businesses have used BRMSs
to tackle the challenges they faced when different types of policies
required to be enforced using software applications. Further, we
present our initial efforts to adapt these systems to implement
network policies, allowing them to be specified in a human-readable
fashion and then automatically converted and enforced using the
OpenFlow protocol.

4.1 Adapting BRMS for Network Policies
The need to define and enforce policy based on known facts and
dynamic events is not unique to network security policies. Busi-
nesses that rely on software (most of them nowadays) to provide
services and manage complex business operations (e.g.web, payroll,
accounting and sales) have experienced similar difficulties when
it comes to the deployment of policies governing their processes
and systems. To cope with these complexities, a class of tools called
Business Rule Management Systems (BRMS) [16] have been devel-
oped. The key characteristic of a BRMS is the separation between
the way a policy definition is specified and how the policy is ac-
tually implemented. The former is expressed in the form of rules
using a BRMS-specific syntax and is typically determined by busi-
ness decision makers, while the latter is done in application code
written typically by trained IT developers. BRMS brings together

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Sergio Rivera, James Griffioen, Zongming Fei, and Jane Huffman Hayes

both policy makers and policy enforcers in one place such that high-
level (human readable) statements can be converted into low-level
(technical) application code.

While each BRMS provides its own syntax to specify rules, they
all share the same underlying structure. Specifically, a conditional
listing conditions and constraints that must be satisfied to trigger
a policy (i.e. a rule), and a consequence that determines the set of
actions that are to be executed if such prerequisites are satisfied. We
present two examples of rules in a financial institution in Figure 5:

Example BRMS Rule 1:
When loan is approved
Then send welcome e-mail

Example BRMS Rule 2:
When amount requested < 5000 and

credit score > 675
Then approve loan

Figure 5: Example BRMS rule for a Bank

The important aspect of these rules is that unlike traditional
match-action approaches found on network equipment, actions
that modify the state of the system may result in other rules being
triggered recursively (e.g. Rule 2 in our example triggers Rule 1).
This feature allows rules to be “listening” constantly to new network
events or actions executed by other rules and activate themselves
dynamically.

We are exploring ways to achieve the benefits and features of
BRMSs to simplify the definition, and automate the enforcement, of
network policies in HPC environments. Our approach leverages the
network-wide view and topology information provided by SDN and
IBN controllers and treats this information as the set of facts that
dynamically trigger BRMS rules and subsequently enforce policies.

4.2 From BRMS Network Policy to SDN Rules
To illustrate how we can adapt BRMS systems to enforce network
policies for HPC environments, we present an example policy writ-
ten in human readable language and show how the policy can be
expressed as a rule in a BRMS and further translated into OpenFlow
rules as the low-level enforcement mechanism. Recall the following
OpenStack policy we listed in Section 3.1:

Policy: The only way to reach OpenStack VM displays is via VNC
from any location on campus.

BRMS rule:
When node is an OpenStackVM-display
Then only-allow VNC traffic from campus network

Enforcement: There are multiple procedures taking place before a
rule is activated. First, the controller, upon discovery of new hosts,
will internally label a device as an OpenStackVM based on defini-
tion (specified elsewhere) of what an OpenStackVM-display is (e.g.
any host in the 10.8.8.0/24 range). Upon characterization of the type
of end-system, the rule will be activated and the nearest OpenFlow
switch in the path to reach that node will become the enforcement

point of the policy. Then, the components of the consequence of the
rule will be translated into the low-level details of a set of Open-
Flow rules. This translation may not be one-to-one. For instance,
there is no “only-allow” action in OpenFlow, instead, a default rule
that drops all traffic would be installed and explicit higher priority
forwarding rules would be installed matching traffic from campus
IPs to the port (or port-ranges) used by VNC connections (e.g. port
5900 + N , where N is the number of displays). For simplicity, we
show below just the default blocking rule, and two rules letting
traffic through from two different groups of campus route-able IP
addresses to the physical display of the OpenStackVMs (i.e. port
5900).

OpenFlow Rules:

Priority: 0
Match:

dst_ip: 10.8.8.0/24
Action: Drop

Priority: 10
Match:

src_ip: 172.16.0.0/12
dst_ip: 10.8.8.0/24
protocol: TCP
dst_port: 5900

Action: Output Port 3

Priority: 10
Match:

src_ip: 128.163.0.0/16
dst_ip: 10.8.8.0/24
protocol: TCP
dst_port: 5900

Action: Output Port 3

Even though the rules presented in the previous example are
installed in an individual switch. Some policies are deployed across
multiple switches with less straightforward actions than just for-
warding packets through a particular port or blocking general-
purpose traffic. For instance, allowing access to Ceph RADOSGW
via the SDN network, or letting some OpenStack VMs be part of the
SDN network for high-speed data transfers involve the calculation
of optimal paths, the generation of OpenFlow rules that perform
VLAN and MAC address rewriting, DNS resolution in the controller
to determine IP addresses for moving targets (e.g. Google Drive),
or network address translation for external transfers.

5 CONCLUSION
HPC systems are evolving with the emergence of network virtu-
alization, programmable networks, advances in containerization
and new control software. These emerging environments require
more advanced, finer-grained, and dynamic network policies that
make them more difficult for system administrators to manage the
network security of the system. Existing approaches for policy def-
inition that involve human intervention are well-suited for general
purpose usage of the network but limited to cope with the require-
ments of emerging HPC systems. In this paper, we proposed an

Expressing and Managing Network Policies for Emerging HPC Systems PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

approach towards policy definition and enforcement that leverages
state-of-the-art technologies such as SDN and Business Rule Man-
agement Systems to automate the deployment of network policies
in campus networks. We described example security policies in
HPC systems and discussed how to define them and enforce these
policies by translating them into OpenFlow rules inside networks.
We are looking at other technologies like Cisco’s DNA, NETCONF,
PBR, gRPC microservices to expand the set of events and devices
that can be expressed in the policy language.

ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
under Grants ACI-1541380, ACI-1541426, and ACI-1642134.

REFERENCES
[1] Amazon. 2006. Amazon Simple Storage Service. https://docs.aws.amazon.com/

AmazonS3/latest/API/s3-api.pdf.
[2] Apache Mesos. 2019. What is Mesos? A distributed systems kernel. http://mesos.

apache.org/.
[3] Apstra. 2019. Intent-based Networking. https://www.apstra.com/intent-based/

intent-based-networking/.
[4] Big Switch Networks. 2017. Intent-based Networking with Big Cloud Fab-

ric. https://www.bigswitch.com/videos/webinar-intent-based-networking-with-
big-cloud-fabric.

[5] Sdx Central. 2019. What is Intent-based Networking. https:
//www.sdxcentral.com/networking/sdn/intent-based/definitions/what-is-
intent-based-networking/.

[6] Ceph. 2019. The Future of Storage. https://ceph.com/.
[7] Cisco. 2019. Cisco Digital Netwokr Architecture (Cisco DNA). https://www.cisco.

com/c/en/us/solutions/enterprise-networks/index.html.
[8] Douglas Comer and Adib Rastegatnia. 2018. OSDF: An Intent-based Software

Defined Network Programming Framework. 2018 IEEE 43rd Conference on Local
Computer Networks (LCN) (Oct 2018). https://doi.org/10.1109/lcn.2018.8638149

[9] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zurawski. 2013.
The Science DMZ: A Network Design Pattern for Data-intensive Science. In
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC ’13). ACM, New York, NY, USA, Article 85,

10 pages. https://doi.org/10.1145/2503210.2503245
[10] Data Center Knowledge. 2018. Intent-based Networking Data Center: Cisco

vs Juniper. https://www.datacenterknowledge.com/networks/intent-based-
networking-data-center-cisco-vs-juniper.

[11] J. Griffioen, K. Calvert, Z. Fei, S. Rivera, J. Chappell, M. Hayashida, C. Carpenter,
Y. Song, and H. Nasir. 2017. VIP Lanes: High-Speed Custom Communication
Paths for Authorized Flows. In 2017 26th International Conference on Computer
Communication and Networks (ICCCN). 1–9. https://doi.org/10.1109/ICCCN.2017.
8038429

[12] Arthur Selle Jacobs, Ricardo José Pfitscher, Ronaldo Alves Ferreira, and Lisan-
dro Zambenedetti Granville. 2018. Refining Network Intents for Self-Driving Net-
works. In Proceedings of the Afternoon Workshop on Self-Driving Networks (SelfDN
2018). ACM, New York, NY, USA, 15–21. https://doi.org/10.1145/3229584.3229590

[13] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,
and Russ Clark. 2015. Kinetic: Verifiable Dynamic Network Control. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
USENIX Association, Oakland, CA, 59–72.

[14] LightReading. 2019. Juniper’s AppFormix Aims to Automate via Intent-Based
Networking. https://www.lightreading.com/automation/junipers-appformix-
aims-to-automate-via-intent-based-networking/d/d-id/736153.

[15] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Composing Software Defined Networks. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and Implementation (NSDI
13). Lombard, IL, 1–13.

[16] Tony Morgan. 2002. Business rules and information systems: aligning IT with
business goals. Addison-Wesley Professional.

[17] Network Computing. 2018. Five Intent-based Networking Vendors. https://www.
networkcomputing.com/networking/5-intent-based-networking-vendors.

[18] NoMachine. 2019. Fast, secure, easy way to get to your stuff. https://www.
nomachine.com/.

[19] NoMachine. 2019. Managing connections by using the NX protocol. https:
//www.nomachine.com/FR11G02294&fn=nx%20protocol.

[20] OpenStack. 2019. Open source software for creating private and public clouds.
https://www.openstack.org/.

[21] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R Wood, and Andy Hopper.
1998. Virtual network computing. IEEE Internet Computing 2, 1 (1998), 33–38.

[22] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone, Robert
Kleinberg, Emin Gun Sirer, and Nate Foster. 2014. Merlin: A Language for
Provisioning Network Resources. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies (CoNEXT ’14).
ACM, New York, NY, USA, 213–226. https://doi.org/10.1145/2674005.2674989

https://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf
https://docs.aws.amazon.com/AmazonS3/latest/API/s3-api.pdf
http://mesos.apache.org/
http://mesos.apache.org/
https://www.apstra.com/intent-based/intent-based-networking/
https://www.apstra.com/intent-based/intent-based-networking/
https://www.bigswitch.com/videos/webinar-intent-based-networking-with-big-cloud-fabric
https://www.bigswitch.com/videos/webinar-intent-based-networking-with-big-cloud-fabric
https://www.sdxcentral.com/networking/sdn/intent-based/definitions/what-is-intent-based-networking/
https://www.sdxcentral.com/networking/sdn/intent-based/definitions/what-is-intent-based-networking/
https://www.sdxcentral.com/networking/sdn/intent-based/definitions/what-is-intent-based-networking/
https://ceph.com/
https://www.cisco.com/c/en/us/solutions/enterprise-networks/index.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/index.html
https://doi.org/10.1109/lcn.2018.8638149
https://doi.org/10.1145/2503210.2503245
https://www.datacenterknowledge.com/networks/intent-based-networking-data-center-cisco-vs-juniper
https://www.datacenterknowledge.com/networks/intent-based-networking-data-center-cisco-vs-juniper
https://doi.org/10.1109/ICCCN.2017.8038429
https://doi.org/10.1109/ICCCN.2017.8038429
https://doi.org/10.1145/3229584.3229590
https://www.lightreading.com/automation/junipers-appformix-aims-to-automate-via-intent-based-networking/d/d-id/736153
https://www.lightreading.com/automation/junipers-appformix-aims-to-automate-via-intent-based-networking/d/d-id/736153
https://www.networkcomputing.com/networking/5-intent-based-networking-vendors
https://www.networkcomputing.com/networking/5-intent-based-networking-vendors
https://www.nomachine.com/
https://www.nomachine.com/
https://www.nomachine.com/FR11G02294&fn=nx%20protocol
https://www.nomachine.com/FR11G02294&fn=nx%20protocol
https://www.openstack.org/
https://doi.org/10.1145/2674005.2674989

	Abstract
	1 Introduction
	2 Managing Network Policies
	2.1 Intent-based Networks
	2.2 Programmable Networks

	3 Complex Environments and Policies
	3.1 Example Ceph/OpenStack Policies

	4 Specifying Network Policies
	4.1 Adapting BRMS for Network Policies
	4.2 From BRMS Network Policy to SDN Rules

	5 Conclusion
	Acknowledgments
	References

