
 1

Make the Most of Your Time: How Should the Analyst Work with
Automated Traceability Tools?

Alex Dekhtyar
Jane Huffman Hayes

Jody Larsen
University of Kentucky

{dekhtyar,hayes}@cs.uky.edu, jody@dreamfrog.com

Abstract

Several recent studies employed traditional

information retrieval (IR) methods to assist in the
mapping of elements of software engineering artifacts
to each other. This activity is referred to as candidate
link generation because the final say in determining
the final mapping belongs to the human analyst.
Feedback techniques that utilize information from the
analyst (on whether the candidate links are correct or
not) have been shown to improve the quality of the
mappings. Yet the analyst is making an investment of
time in providing the feedback. This leads to the
question of whether or not guidance can be provided
to the analyst on how to best utilize that time. This
paper simulates a number of approaches an analyst
might take to evaluating the same candidate link list,
and discovers that more structured and organized
approaches appear to save time/effort of the analyst.

1. Introduction

There are many tasks or activities that are
undertaken as a routine part of the software
development lifecycle and require a human software
engineer or analyst to make decisions or judgments
based on the output of an automated tool. For
example, a software architect may examine the outputs
of a cost benefit analysis tool to decide on a particular
architecture; a project manager may examine the output
of a risk assessment tool to determine what risks to
mitigate; a software maintainer may examine the code
modules retrieved by a tool as relevant to a given bug
report, etc. When the process of making judgments or
decisions is repetitive and/or mundane, it is important
to make the best possible use of the human’s time.
Predictor models have long been used to predict how

things will behave, such as project cost, complexity,
risk, change, etc. Can predictor models be used to
predict how human decisions or human approaches to a
mundane task of providing judgments may impact the
quality of the final results? This idea is examined here,
using the specific case of an analyst interacting with a
tool that is helping to build a mapping between
software engineering artifacts.

Much of the information in a software artifact
repository is expressed as free form text. Information
retrieval (IR) techniques have demonstrated usefulness
in building models of the relationships between such
textual artifacts, such as requirements traceability
matrices (RTMs) or documentation dependencies, i.e.,
what portions of a user’s manual need to be changed
when certain source code methods are modified, for
example [7,8,12,1,14,4].1 In a nutshell, these
techniques examine the elements of a high level artifact
(such as a concept specification) and return the
elements deemed relevant from a lower level artifact
(such as source code). When the notion of feedback
(similar to the “more URLs like this” feature in
Google) is added to the IR methods, the result is better
candidate RTMs. That is to say that a higher number
of true links are found while the number of false
positives is lowered.

While the overarching goal is to generate the best
possible RTM, it is clearly desirable to require the least
amount of analyst effort possible to achieve this. In
fact, even if an analyst is willing to expend a maximal
amount of effort, E, it is still important to make the best
possible use of E.

1 RTMs are the backbone of many important activities performed by
Verification and Validation (V&V) and Independent Verification
and Validation (IV&V) analysts, including ensuring that
requirements are satisfied by the design, ensuring that the
requirements are implemented in the code, etc.

 2

In this paper, we report on an initial study that
compares the influence of different simulated analyst
behaviors when presented with the same list of
candidate links retrieved by an automated method. In a
number of previous studies [9,10], our research group
raised the issue of the importance of studying analyst
behavior. We separated the study of traceability into
two categories: the study of methods and the study of
analysts. The former category includes empirical
studies concentrating on the analysis of the results
provided by the automated traceability methods without
interaction with an actual analyst. The latter category
encompasses empirical studies that involve an actual
analyst performing traceability tasks. We have also
noted that we believe that the study of the analyst is
often a garbage-in—garbage-out endeavor, i.e., if the
analyst sees “bad” results, it is very hard for the analyst
to improve upon them.
 The study reported here belongs to the realm of the
study of methods, as in this study we simulate perfect
analyst behavior, i.e., we assume that analysts always
correctly determine the status of candidate links
provided to them. This work is a necessary precursor to
the study of the analyst, which will concentrate on the
same questions.

The paper is organized as follows. Section 2 briefly
describes the mathematics behind the automated
tracing method used in this study. Section 3 describes
the simulation method and the proposed analyst
scenarios. Section 4 presents the results of our
experiment as well as the dataset used for the validation
(in the PROMISE repository). Section 5 presents
related work in mapping and traceability, with
emphasis on prior studies of the analyst. We provide
final analysis of the results in Section 6.

.

2. Automated Tracing and Feedback
Processing

Our group reported on a number of Information
Retrieval techniques used to generate candidate link
lists [12, 13]. For this study, we selected one method,
vector space retrieval using tf-idf (term frequency-
inverse document frequency) term weighting,
completed with standard Rochio feedback processing
method [3]. We briefly describe how these methods are
applied to the problem of traceability.

 The tracing tasks we consider involve two textual
artifacts of the software lifecycle, e.g., a requirements
document and a design document. Both artifacts are
split into individual elements. The tracing task is to
build a mapping from the elements of one artifact,

referred to as high-level document, to the elements of
the second artifact, which we call low-level document.

The IR method we use, vector space retrieval,
converts each textual element into a vector of keyword
weights. If V={t1,…,tN} is the list of all keywords found
in the artifacts, then an element d is represented as a
vector d={w1,…,wN} of keyword weights, where each
keyword weight wi is computed as the product
wi=tf i*idf i. Here, tfi, called term frequency of the
keyword, is the normalized frequency of the
occurrences of the keyword wi in our element d. idfi,
known as the inverse document frequency of wi is
computed as idfi = log(M/Mi) [3], where M is the total
number of elements in the document and Mi is the
number of elements that contain wi.

For each high-level document element, the vector
space retrieval method provides a ranking of low-level
document elements based on the similarity score
between them. The similarity between two vectors d
and q constructed as described above is computed as
the cosine of the angle between the vectors:

∑∑
==

⋅

⋅= N

i
i

N

i
i dq

dq
dqsim

1

2

1

2

),(.

The quality of the rankings obtained this way is
measured through precision and recall. Precision,
measuring the accuracy of the ranking, is the
percentage of retrieved links that are correct. Recall,
measuring the coverage of the ranking is the percentage
of correct links that were retrieved.

After the ranked candidate link list is built, it can be
improved via the feedback processing mechanism.
Feedback processing involves examining a subset of
the links in the candidate link list, and determining
whether each link is correct or not. Let q be a high-
level requirement and Dq be the set of all low-level
requirements retrieved by our IR method. Suppose a
subset of Dq was examined and broken into two sets: Rq
and Iq, of relevant (correct) and irrelevant (false
positive) links. Standard Rochio feedback processing,
the method we use in this study, uses this information
to change the vector q as follows:

∑∑
∈∈

−+=
qq IdqRdq

new d
I

d
R

qq .
γβα

Here, α, β, and γ are normalizing constants, which
indicate the relative importance of the original vector
(α), positive information (β), and negative information

 3

(γ). We note here that the presence of positive feedback
may affect the recall of the candidate link list (new
relevant links may be retrieved), while the presence of
negative feedback may affect its precision (other false
positives can potentially be removed from the list).

3. Simulating Analyst

 In our study we have simulated analyst behavior
described below in this section. While in our future
work we are planning on studying the work of analysts
doing tracing in-vitro as well as in-vivo, this study did
not use live analysts. Rather, we have designed a
number of analyst behaviors, and implemented each
behavior as a program that takes as input the candidate
RTM, and interacts with our feedback processor at
appropriate stages. Because this study is a simulation
for analysts, we only accounted for differences in the
simulated behavior.

For this study, we assumed the following paradigm.
A task of after-the-fact tracing2 the elements of one
textual artifact to another is given to a human analyst.
The analyst has at his disposal a software tool which
can prepare candidate link lists and modify them
through the feedback processing mechanism, as
described in Section 3. The variable part of our
simulations is the “front end” of the software. In our
study, we simulate four different ways in which the
analyst can interact with the software in order to
complete the task. We document these four approaches
and our assumptions about the analyst below.

For the analyst interaction with the software, we use
two parameters: the order in which the analyst is shown
the candidate links, and the use of feedback. The four
cases we consider are:

Global ordering without feedback. The result of

the work of the IR method is a collection of candidate
link lists: one for each high-level element. Each link
comes with a similarity score. In this method, the
software first merges all the candidate link lists into a
single list, and sorts it in descending order based on the
similarity score. The software front-end displays
candidate links (i.e., the text of both high- and low-
level elements) one-at-a-time in descending order of
similarity, and asks the analyst to either accept or reject
the link. No feedback is used.

2 I.e., we assume that the two artifacts represent the
final versions of the documents, and do not change
over time.

Local ordering without feedback. In this

approach, the analyst is also shown links one-at-a-time,
but in a different order. For each high-level
requirement, the analyst is first shown the top candidate
link (the high-level requirements are sorted in the
document order). After that, the analyst is shown the
second highest-scoring link for each requirement, and
so on. There is no feedback. However, if the analyst
sees the last correct link retrieved for a specific high-
level element, the analyst conveys this information to
the software, and the software stops showing links for
this element from that point on.

Global ordering with feedback. This approach

works exactly the same way as global ordering without
feedback, except that after each choice is made by the
analyst, the feedback is run for the high-level element
that the analyst was observing. Then, the resulting new
list of candidate links obtained from the feedback
method is incorporated into the globally sorted list
again (thus, the order in which links are shown to the
analyst is affected on each stage).

Local ordering with feedback. This method is

similar to local ordering without feedback, except that
the feedback method is run after each analyst decision.

In setting up our simulations, we make two

assumptions about our analysts:

1. The analyst always correctly identifies the
nature of the observed link, and

2. The analyst is able to determine when a
high-level element is completely satisfied
(all children elements have been found).

While in practice these two assumptions may not

always hold, our reasons for using them are quite
straightforward. Automated tracing methods and
techniques must be built and tested assuming perfect
feedback from the analyst. That is, if our methods
cannot provide good results with perfect feedback, the
results will certainly not improve when the feedback is
imperfect. In a similar vein, we view our “perfect”
analyst as being able to determine when a specific
requirement is completely satisfied.

Measures. We are interested in establishing the
amount of analyst effort spent on a tracing task. As the
direct measure of analyst effort, we use the number of
observed candidate links that the analyst has to study
and accept or reject during the run of the method. We

 4

use precision and confirmed recall (i.e., recall within
the observed set of candidate links) to establish the
quality of the final mapping produced by the analyst.
We also use selectivity to measure the relative effort of
the analyst. Selectivity is computed as:

,
nm

n
yselectivit observed

⋅
=

where nobserved is the total number of links observed by
the analyst, and m and n are the number of high-level
and low-level elements, respectively. Thus, selectivity
measures the percentage of all possible links that the
analyst has examined.

4. Experiment

4.1. Experimental Design

We have conducted two simulation studies of the
analyst effort. The first study compared the (simulated)
analyst effort required to achieve a predefined recall
level for the four methods described in Section 4. The
second study fixed analyst effort and compared the
accuracy (recall and precision) achieved for this effort.

The second study used the four methods described
above and a random simulation. Some may wonder
why a random simulation was examined. Menzies et
al. [15] note that software analysis should “start with
random methods because they are so cheap, moving to
the more complex methods only when random methods
fail.”

Table 1. CM-1 dataset overview.
Dataset Name CM-1
elements in requirements
document (high-level)

235

elements in design
document (low-level)

220

correct links 361
Total # of retrieved candidate
links

36,556

Total # of correct links
retrieved

358

Recall 0.99
 Precision 0.001
Selectivity 0.707

Table 2. Results of the first experiment.

Method

Confirme
d True
Links

Observed
Links Precision Recall Selectivity

 Local, Feedback 321 1595 0.20 0.89 0.03
Local, No Feedback 321 1713 0.19 0.89 0.03
 Global, Feedback 321 5399 0.06 0.89 0.10
 Global, No Feedback 321 6149 0.05 0.89 0.12

Table 3. Results of the second experiment.

Method
Observed
Links

Confirmed
True
Links Precision Recall

Local, Feedback 1595 321 0.20 0.89
Local, No Feedback 1595 326 0.20 0.875
Global, Feedback 1595 236 0.15 0.65
Global, No Feedback 1595 227 0.14 0.63
Local, Random 1595 65 0.04 0.18
Global, Random 1595 58 0.036 0.16

 5

Dataset. For this study, we used CM-1 [6], a
sanitized dataset for a NASA scientific instrument.
The CM-1 dataset from NASA comprises many
artifacts: source code, requirements specification,
test cases, design specification, etc. In prior
maintenance-related work, static metrics from CM-1
were extracted and placed that in the PROMISE
repository and used in a number of studies. We did
not use these static metrics (now commonly
referred to as CM-1 dataset) for this study.
Instead, we have used two original CM-1 artifacts:
the requirements specification and the design
specification and the RTM of the relationships
between these two artifacts that we have built and
submitted it to the PROMISE repository in
conjunction with [16]. Table 1 lists the basic
characteristics of the CM-1 dataset and the properties
of the candidate link list retrieved by the vector space
retrieval method.

As can be seen from this table, the unfiltered
candidate link list returned by the automated method
captures almost all of the correct links, but introduces
an enormous amount of noise. The four ways of
simulating analyst behavior are designed to give the
analyst the opportunity to not consider every single
retrieved candidate link.

Study 1. Analyst effort for fixed recall. For the
first experiment, we elected to compare the effort of
the simulated analyst at a fixed recall level for the
four methods described in Section 4. Our original
intention was to fix our test recall level at 90% (325
out of 361 correct links retrieved). However, our
experiments established that some methods retrieve
only 321 correct links for recall of 88.9%. We used
this latter level to compare the analyst effort.

 Study 2. Recall for fixed analyst effort. After
looking at the results of our first experiment, we
asked ourselves whether we could get better insight
into where the analyst effort is wasted by comparing
the recall obtained from all four methods with fixed
effort. We considered the recall for our four methods
at roughly the same effort level. We took 1595
observed candidate links, the smallest effort from the
first study, as our benchmark effort for this study.

In addition to comparing the four methods
described in Section 4 to each other at fixed effort
level, we also simulated two random selection
methods and compared the recall at the fixed level

from our four methods to the random simulation. The
two random simulations are described below:

Global Filtered Random Selection. In this method,
we ordered all candidate links in the candidate link
lists by their similarity score and filtered out the
bottom 75%. The simulation selected one-at-a-time,
without return, a link from the remaining top 25% of
the links. Each link was selected with equal
probability and 1595 links were selected.

Local Filtered Random Selection. In this method,
the candidate link list for each high-level element was
pruned at the 25% level, and then an attempt was
made to draw 7 or 8 links (1595/220 = 7.25), without
return, from the pruned list.

We ran each random simulation 1000 times and use
medians (which proved to be very close to the
averages in both cases, see Table 4) for comparison.

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Observed Candidate Links

O
b

se
rv

ed
 C

o
rr

ec
t

L
in

ks

Global, No Feedback Global, feedback Local, Feedback Local No Feedback

Figure 1. Simulation internals: observed correct
links vs. all observed links during the four

simulations

4.2. Results

We present the results of our experiments below. In
Table 2, we show the results of the first experiment.
As can be seen from this table, the biggest factor in
determining the analyst effort was whether or not the
method used local or global sorting. To be more
precise, our “local” methods simulate the analyst
providing the software the “I see all the children
links for this high level link, proceed to the next
link” command. Table 2 shows that the analyst’s
ability to stop at the “right place” has a drastic impact
on the total effort. In addition, we observe that there
is a benefit to feedback. The savings in effort are 7%

 6

for the “local” methods when feedback is used and
13% for the “global” methods.

Table 3 shows how each method compares at the
level of 1595 observed links. We can see, that, as
expected, random methods cannot produce any
meaningful results (for the sake of completeness, we
present some standard descriptive statistics for the
two random simulations in Table 4). Figure 1 shows
the internals for the four non-random simulations we
ran, plotting the number of correct links observed
versus the total number of observed candidate links.
As can be seen from the figure, the local ordering
methods, in which we simulated the “I see all the
children” command, find the majority of the correct
links relatively quickly: at around 1000 observed
links. The local simulations discovered around 250
correct links (for the confirmed precision of 25%).
For the global ordering methods, correct links are
observed much more uniformly throughout the first
2000 observed links, with the rate of observation of
new correct links tapering off.

Table 4. Statistics from the random simulations.
Method Local,

Random
Global,
Random

of simulation runs 1000 1000
observed links 1595 1595
Min # correct links 45 39
Max # correct links 89 88
Mean # correct links 64.867 58.67
Median # correct links 65 58
St. dev. # correct links 7.72 6.66

4.3. Analysis

Looking at our simulations, we can make a number of
observations.

Knowing when to stop is crucial. The largest
difference between the simulated analyst effort arises
in simulations based on local sorting versus
simulations based on global sorting of the links. The
key reason for this is our decision to simulate the
analyst correctly determining when (s)he has seen all
links for a specific high-level requirement for the
methods based on traversing individual candidate link
lists without merging them3.

3 Our intuition is simple: an analyst looking at a
sequence of links for the same high-level requirement

Feedback helps, to a degree. In our implementation,
feedback for an individual high-level requirement was
processed almost instantaneously. Methods that used
feedback showed an overall improvement of 7% to
13% in the simulated analyst method. While this
improvement is not drastic, it is visible.

Have a system. All four non-random methods were
designed to simulate a specific structured analyst
behavior. Our random simulations represent
unstructured analyst behavior. It is clear from the
results in Table 3 that unstructured analyst behavior is
highly inefficient.

This study is still preliminary, and should be viewed
as a prelude to the study of the behavior of real (not
simulated) analysts in tracing tasks. The results we
observed provide guidelines to assist us in building
user interfaces for the tracing software. They also
suggest specific types of analyst-software interactions
that need to be studied in-vivo.

5. Related Work

Though the generation of mappings is a general
problem, it has mainly been investigated under the
guise of “requirements traceability” or requirements
tracing. Requirements tracing is defined, by Gotel
and Finkelstein [5], as “the ability to follow the life of
a requirement in a forward and backward direction.”
All work to date has concentrated on the recovery or
generation of traceability links between software
engineering artifacts (structured as well as non-
structured artifacts).

Antoniol et al. [1] applied the vector space model

(also known as term frequency-inverse document
frequency [3]) to the problem of recovering
traceability links between a textual user’s manual and
source code and between textual functional
requirements and source code. They were able to
achieve high levels of recall (93 – 100%), but were
only able to achieve 13 – 18% precision. Antoniol et
al. [2] also applied a probabilistic method to the
problem of recovering links between source code and
documentation. Though high precision was achieved
(83%), it was done at the price of recall (39%). Note

is likely to be in a good position to call it quits at
some point. The analyst looking at a merged list of
candidate links may not be able to easily do so.

 7

that for the purposes of V&V and IV&V, recall needs
to be high (90% or higher).

 Marcus and Maletic [14] applied latent semantic
indexing (LSI) to the problem of recovering
traceability links between documentation and source
code (using the same dataset as Antoniol et al. [1])
and found that LSI performs at least as well as the
vector space model while requiring less pre-
processing of the artifacts. They achieved recall of
91 – 100% and precision of 13 – 18%. When they
relaxed recall to 71%, they achieved precision of
43%. Cleland-Huang et al. developed a method for
dynamically generating traceability data in a
speculative manner for performance models that may
be affected by a proposed change [4]. Links were
established and maintained between the performance
models and key requirements data that had been
derived from the performance models.

In prior work, we found that simple keyword-
matching methods, applied to the problem of tracing
textual requirements to textual lower level
requirements or to design elements, could achieve
recall of 63% and precision of 39% [7]. This
required much work on the analyst’s part though,
such as the building of a keyword ontology and/or the
manual assignment of keywords to all low and high
level elements. Examining the same problem, when a
thesaurus was added to the vector space model, recall
was 85% and precision was 40%. In later work, we
introduced the notion of analyst feedback. Here, the
analyst provides feedback on the top N elements of
each candidate link list (yes this is a link, no this is
not a link) and the feedback is used to modify the
vectors for the high level elements before re-
executing the matching algorithm. By adding
feedback, we were able to improve recall to close to
90% with precision close to 80% (for the MODIS
dataset) [12].

The current study focuses on the role of the analyst
in requirements tracing. In earlier work [7], we
undertook a study to compare an analyst: 1)
performing tracing manually, 2) using a keyword-
based tool, 3) using the output from a keyword-based
tool, and 4) using our IR tool. The results showed
that the analyst and the keyword-based tool achieved
63% recall and 39% precision, while using our tool
achieved 85% recall and 40% precision. Next, we
developed the requirements for a requirements tracing
tool [8] and found that a number of the requirements
had to do with the analyst, specifically the utility sub-
requirement of believability (the analyst feels that the
tool is useful), the communicability sub-requirement
of discernability (the tool provides information, the

process flow, and the results to the analyst in an
understandable way), and the final requirement of
endurability (the tool makes the tracing task as
pleasant as possible).

Our first study of the analyst was undertaken using
a small dataset (MODIS) and a number of
requirements traceability matrices [10]. Some RTMs
had low recall but high precision, some had low
precision but high recall, and varied combinations in
between. It was our belief that analysts would make
better feedback decisions if given a high quality RTM
(high recall and high precision), but would make bad
decisions if given poor quality RTMs. What was
observed was that all analysts made bad decisions
(threw away true links and kept false positives). The
study was very small, however, and general
conclusions could not be drawn. We undertook a
small study with graduate students and found that
those using our IR tool (called Requirements Tracing
On-target or RETRO) achieved statistically
significantly higher recall (70.1% versus 33% for the
group using no tool) but lower precision (12.8%
versus 24.2%), but took far less time to complete the
tracing task (three times less minutes (41.8 minutes
versus 120.66) [11]. A small usability survey was
also conducted. Students found the RETRO features
that they used to be very useful. Students used most
all of the features available to them. But there
seemed to be a misunderstanding of the feedback
feature.

To our knowledge, our work is the only that has
been done to examine the role of the user in tracing
work. The current work differs from the work
mentioned above in several ways. First, it
specifically focuses on the information that the
analyst will see. Second, it examines a number of
scenarios under which the analyst navigates the
generated traceability links, without requiring a real
analyst. Finally, it provides guidance on how to best
work with feedback-driven information retrieval
tracing methods.

6. Conclusions and future work

The analyst has the final say in many applications,
such as a maintainer deciding which tool-retrieved
code components are related to a bug report that is
being addressed. In V&V and IV&V, analysts often
work with tracing tools that retrieve pairs of textual
artifacts that are deemed relevant. The analyst can
save time and reduce errors by using such tools to

 8

assist with tracing tasks. But the analyst has the final
say and must render decisions on the proposed links.
As it is difficult to perform studies using real analysts,
we have explored the use of predicting analyst
behavior and then examining the impact on quality of
the final trace and on analyst effort. The study
suggests which facilities the analyst should have when
working with the software, e.g., “I have seen all the

links for this high-level requirement” command. It also
suggests that the tracing software should structure its
interactions with analysts, providing them with
specific requests in specific order, rather than relying
on analysts to wade their way through large fields of
candidate links.

As mentioned above, this is a preliminary study.
We have two basic avenues to explore: additional
simulations to better understand the impact of specific
tracing methods used to prepare candidate links, and
in-vivo study of analyst interaction with tracing
software. The results of the study reported in this
paper will be used to build analyst guidance into user
interfaces of the tracing software.

7. Acknowledgments

Our thanks go to Stephanie Ferguson and Marcus
Fisher. We thank Senthil Sundaram for his
assistance. We thank Mike Chapman and the Metrics
Data Program (MDP) for access to the CM-1 dataset.
This work is sponsored by NASA under grant
NNX06AD02G.

7. References

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo. Recovering Traceability Links between Code and
Documentation. IEEE Transactions on Software
Engineering, Volume 28, No. 10, October 2002, 970-983.

 [2] Giuliano Antoniol, Gerardo Canfora, Andrea De Lucia,
Ettore Merlo: Recovering Code to Documentation Links in
OO Systems. WCRE 1999: 136-144.

[3] Ricardo A. Baeza-Yates, Berthier A. Ribeiro-Neto:
Modern Information Retrieval. ACM Press / Addison-
Wesley, 1999.

[4] J. Cleland-Huang, C.K. Chang, G. Sethi, K. Javvaji, H.
Hu, and J Xia. Automating speculative queries through
event-based requirements traceability. Proceedings of the
IEEE Joint International Requirements Engineering
Conference (RE’02), Essex, Germany, Sept. 2002.

[5] O. Gotel and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” Proceedings of the
First International Conference on Requirements
Engineering, pp. 94 – 101, 1994.

[6] MDP Website, CM-1 Project,
http://mdp.ivv.nasa.gov/mdp_glossary.html#CM1.

[7] J. Huffman Hayes; A. Dekhtyar, and J. Osborne,
“Improving Requirements Tracing via Information
Retrieval,” in Proceedings of the International Conference
on Requirements Engineering (RE), Monterey, California,
September 2003.

[8] Jane Huffman Hayes, Alexander Dekhtyar, Senthil
Sundaram, Sarah Howard, “Helping Analysts Trace
Requirements: An Objective Look,” in Proceedings of
IEEE Requirements Engineering Conference (RE) 2004,
Kyoto, Japan, September 2004, pp. 249-261.

[9] Jane Huffman Hayes, Alex Dekhtyar, Senthil
Sundaram, “Text Mining for Software Engineering: How
Analyst Feedback Impacts Final Results,” Proceedings of
Workshop on Mining of Software Repositories (MSR),
associated with ICSE 2005, St. Louis, MO, May 2005, pp.
58 - 62.

[10] Jane Huffman Hayes, Alex Dekhtyar, Senthil
Sundaram, “Humans in the Traceability Loop: Can't Live
With 'Em, Can't Live Without 'Em,”, in Proc. Workshop on
Traceability of Emerging Forms of Software Engineering
(TEFSE’05), Long Beach, CA, November 2005.

[11] Jane Huffman Hayes , Alex Dekhtyar, Senthil
Sundaram, Ashlee Holbrook, Sravanthi Vadlamudi, Alain
April, REquirements Tracing On target (RETRO):
Improving Maintenance through Traceability Recovery,
University of Kentucky Technical Report UK CS454-06,
March 2006.

[12] J. Huffman Hayes, A. Dekhtyar, and S. Sundaram.
Advancing Requirements Tracing: An Objective Look,
IEEE Transactions on Software Engineering, Volume 32,
No. 1, (January 2006), 4-19.

[13] Jane Huffman Hayes, Alex Dekhtyar, Ashlee
Holbrook, Olga Dekhtyar, Senthil Sundaram, “Will
Johnny/Joanie Make a Good Software Engineer?: Are
Course Grades Showing the Whole Picture?,” in
Proceedings of the Conference on Software Engineering
Education and Training (CSEET), Oahu, Hawaii, April
2006, pp. 175 - 182.

[14] A. Marcus, and J. Maletic. “Recovering
Documentation-to-Source Code Traceability Links using
Latent Semantic Indexing,” Proceedings of the Twenty-
Fifth International Conference on Software Engineering
2003, Portland, Oregon, 3 – 10 May 2003, pp. 125 – 135.

 9

[15] Menzies, T., Owen, D., and Richardson, J. The
Strangest Thing about Software. IEEE Computer, January
2007, pp. 54 – 60.

[16] Senthil Karthikeyan Sundaram, Jane Huffman Hayes
and Alex Dekhtyar, Baselines in Requirements Tracing, in

Proceedings, PROMISE'2005: International Workshop on
Predictor Models in Software Engineering , St. Louis, MO,
May 2005.

