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Abstract 

 
Several recent studies employed traditional 

information retrieval (IR) methods to assist in the 
mapping of elements of software engineering artifacts 
to each other. This activity is referred to as candidate 
link generation because the final say in determining 
the final mapping belongs to the human analyst.  
Feedback techniques that utilize information from the 
analyst (on whether the candidate links are correct or 
not) have been shown to improve the quality of the 
mappings.  Yet the analyst is making an investment of 
time in providing the feedback.  This leads to the 
question of whether or not guidance can be provided 
to the analyst on how to best utilize that time. This 
paper simulates a number of approaches an analyst 
might take to evaluating the same candidate link list, 
and discovers that more structured and organized 
approaches appear to save time/effort of the analyst.  

 

1. Introduction 
 

There are many tasks or activities that are 
undertaken as a routine part of the software 
development lifecycle and require a human software 
engineer or analyst to make decisions or judgments 
based on the output of an automated tool.  For 
example, a software architect may examine the outputs 
of a cost benefit analysis tool to decide on a particular 
architecture; a project manager may examine the output 
of a risk assessment tool to determine what risks to 
mitigate; a software maintainer may examine the code 
modules retrieved by a tool as relevant to a given bug 
report, etc.  When the process of making judgments or 
decisions is repetitive and/or mundane, it is important 
to make the best possible use of the human’s time.  
Predictor models have long been used to predict how 

things will behave, such as project cost, complexity, 
risk, change, etc.  Can predictor models be used to 
predict how human decisions or human approaches to a 
mundane task of providing judgments may impact the 
quality of the final results?  This idea is examined here, 
using the specific case of an analyst interacting with a 
tool that is helping to build a mapping between 
software engineering artifacts. 

Much of the information in a software artifact 
repository is expressed as free form text.  Information 
retrieval (IR) techniques have demonstrated usefulness 
in building models of the relationships between such 
textual artifacts, such as requirements traceability 
matrices (RTMs) or documentation dependencies, i.e., 
what portions of a user’s manual need to be changed 
when certain source code methods are modified, for 
example [7,8,12,1,14,4].1 In a nutshell, these 
techniques examine the elements of a high level artifact 
(such as a concept specification) and return the 
elements deemed relevant from a lower level artifact 
(such as source code).  When the notion of feedback 
(similar to the “more URLs like this” feature in 
Google) is added to the IR methods, the result is better 
candidate RTMs.  That is to say that a higher number 
of true links are found while the number of false 
positives is lowered. 

While the overarching goal is to generate the best 
possible RTM, it is clearly desirable to require the least 
amount of analyst effort possible to achieve this.  In 
fact, even if an analyst is willing to expend a maximal 
amount of effort, E, it is still important to make the best 
possible use of E.  

                                                           
1 RTMs are the backbone of many important activities performed by 
Verification and Validation (V&V) and Independent Verification 
and Validation (IV&V) analysts, including ensuring that 
requirements are satisfied by the design, ensuring that the 
requirements are implemented in the code, etc.   
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In this paper, we report on an initial study that 
compares the influence of different simulated analyst 
behaviors when presented with the same list of 
candidate links retrieved by an automated method.  In a 
number of previous studies [9,10], our research group 
raised the issue of the importance of studying analyst 
behavior. We separated the study of traceability into 
two categories: the study of methods and the study of 
analysts. The former category includes empirical 
studies concentrating on the analysis of the results 
provided by the automated traceability methods without 
interaction with an actual analyst. The latter category 
encompasses empirical studies that involve an actual 
analyst performing traceability tasks.  We have also 
noted that we believe that the study of the analyst is 
often a garbage-in—garbage-out endeavor, i.e., if the 
analyst sees “bad” results, it is very hard for the analyst 
to improve upon them.  
     The study reported here belongs to the realm of the 
study of methods, as in this study we simulate perfect 
analyst behavior, i.e., we assume that analysts always 
correctly determine the status of candidate links 
provided to them. This work is a necessary precursor to 
the study of the analyst, which will concentrate on the 
same questions. 

The paper is organized as follows.  Section 2 briefly 
describes the mathematics behind the automated 
tracing method used in this study. Section 3 describes 
the simulation method and the proposed analyst 
scenarios.  Section 4 presents the results of our 
experiment as well as the dataset used for the validation 
(in the PROMISE repository). Section 5 presents 
related work in mapping and traceability, with 
emphasis on prior studies of the analyst. We provide 
final analysis of the results in Section 6. 
 

. 

2. Automated Tracing and Feedback 
Processing 
   
Our group reported on a number of Information 
Retrieval techniques used to generate candidate link 
lists [12, 13]. For this study, we selected one method, 
vector space retrieval using tf-idf (term frequency-
inverse document frequency) term weighting, 
completed with standard Rochio feedback processing 
method [3]. We briefly describe how these methods are 
applied to the problem of traceability. 

   The tracing tasks we consider involve two textual 
artifacts of the software lifecycle, e.g., a requirements 
document and a design document. Both artifacts are 
split into individual elements. The tracing task is to 
build a mapping from the elements of one artifact, 

referred to as high-level document,  to the elements of 
the second artifact, which we call low-level document. 

The IR method we use, vector space retrieval, 
converts each textual element into a vector of keyword 
weights. If V={t1,…,tN} is the list of all keywords found 
in the artifacts, then an element d is represented as a 
vector d={w1,…,wN} of keyword weights, where each 
keyword weight wi is computed as the product 
wi=tf i*idf i.  Here, tfi, called term frequency of the 
keyword, is the normalized frequency of the 
occurrences of the keyword wi in our element d. idfi, 
known as the inverse document frequency of  wi is 
computed as idfi = log(M/Mi) [3], where M is the total 
number of elements in the document and Mi is the 
number of elements that contain wi. 

For each high-level document element, the vector 
space retrieval method provides a ranking of low-level 
document elements based on the similarity score 
between them. The similarity between two vectors d 
and q constructed as described above is computed as 
the cosine of the angle between the vectors: 
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The quality of the rankings obtained this way is 
measured through precision and recall. Precision, 
measuring the accuracy of the ranking, is the 
percentage of retrieved links that are correct. Recall, 
measuring the coverage of the ranking is the percentage 
of correct links that were retrieved. 

After the ranked candidate link list is built, it can be 
improved via the feedback processing mechanism. 
Feedback processing involves examining a subset of 
the links in the candidate link list, and determining 
whether each link is correct or not. Let q be a high-
level requirement and Dq be the set of all low-level 
requirements retrieved by our IR method. Suppose a 
subset of Dq was examined and broken into two sets: Rq 
and Iq, of relevant (correct) and irrelevant (false 
positive) links. Standard Rochio feedback processing, 
the  method we use in this study, uses this information 
to change the vector q as follows: 
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Here, α, β, and γ are normalizing constants, which 
indicate the relative importance of the original vector 
(α),  positive information (β), and negative information 
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(γ). We note here that the presence of positive feedback 
may affect the recall of the candidate link list (new 
relevant links may be retrieved), while the presence of 
negative feedback may affect its precision (other false 
positives can potentially be removed from the list). 
 
 

3. Simulating Analyst  
 
   In our study we have simulated analyst behavior 
described below in this section. While in our future 
work we are planning on studying the work of analysts 
doing tracing in-vitro as well as in-vivo, this study did 
not use live analysts. Rather, we have designed a 
number of analyst behaviors, and implemented each 
behavior as a program that takes as input the candidate 
RTM, and interacts with our feedback processor at 
appropriate stages. Because this study is a simulation 
for analysts, we only accounted for differences in the 
simulated behavior. 
 

For this study, we assumed the following paradigm.  
A task of after-the-fact tracing2 the elements of one 
textual artifact to another is given to a human analyst. 
The analyst has at his disposal a software tool which 
can prepare candidate link lists and modify them 
through the feedback processing mechanism, as 
described in Section 3. The variable part of our 
simulations is the “front end” of the software.  In our 
study, we simulate four different ways in which the 
analyst can interact with the software in order to 
complete the task. We document these four approaches 
and our assumptions about the analyst below. 

For the analyst interaction with the software, we use 
two parameters: the order in which the analyst is shown 
the candidate links, and the use of feedback. The four 
cases we consider are: 

 
Global ordering without feedback. The result of 

the work of the IR method is a collection of candidate 
link lists: one for each high-level element. Each link 
comes with a similarity score. In this method, the 
software first merges all the candidate link lists into a 
single list, and sorts it in descending order based on the 
similarity score.  The software front-end displays 
candidate links (i.e., the text of both high- and low- 
level elements) one-at-a-time in descending order of 
similarity, and asks the analyst to either accept or reject 
the link. No feedback is used. 

                                                           
2 I.e., we assume that the two artifacts represent the 
final versions of the documents, and do not change 
over time. 

 
Local ordering without feedback.  In this 

approach, the analyst is also shown links one-at-a-time, 
but in a different order. For each high-level 
requirement, the analyst is first shown the top candidate 
link (the high-level requirements are sorted in the 
document order). After that, the analyst is shown the 
second highest-scoring link for each requirement, and 
so on. There is no feedback. However, if the analyst 
sees the last correct link retrieved for a specific high-
level element, the analyst conveys this information to 
the software, and the software stops showing links for 
this element from that point on.  

 
Global ordering with feedback. This approach 

works exactly the same way as global ordering without 
feedback, except that after each choice is made by the 
analyst, the feedback is run for the high-level element 
that the analyst was observing.  Then, the resulting new 
list of candidate links obtained from the feedback 
method is incorporated into the globally sorted list 
again (thus, the order in which links are shown to the 
analyst is affected on each stage). 

 
Local ordering with feedback. This method is 

similar to local ordering without feedback, except that 
the feedback method is run after each analyst decision.  

 
In setting up our simulations, we make two 

assumptions about our analysts: 
 

1. The analyst always correctly identifies the 
nature of the observed link, and 

2. The analyst is able to determine when a 
high-level element is completely satisfied 
(all children elements have been found). 

 
While in practice these two assumptions may not 

always hold, our reasons for using them are quite 
straightforward. Automated tracing methods and 
techniques must be built and tested assuming perfect 
feedback from the analyst. That is, if our methods 
cannot provide good results with perfect feedback, the 
results will certainly not improve when the feedback is 
imperfect. In a similar vein, we view our “perfect”  
analyst as being able to determine when a specific 
requirement is completely satisfied.   

 
Measures. We are interested in establishing the 
amount of analyst effort spent on a tracing task. As the 
direct measure of analyst effort, we use the number of 
observed candidate links that the analyst has to study 
and accept or reject during the run of the method. We 



 4 

use precision and confirmed recall (i.e., recall within 
the observed set of candidate links) to establish the 
quality of the final mapping produced by the analyst. 
We also use selectivity to measure the relative effort of 
the analyst. Selectivity is computed as:  

,
nm

n
yselectivit observed

⋅
=  

where nobserved is the total number of  links observed by 
the analyst, and m and n are the number of high-level 
and low-level elements, respectively. Thus, selectivity 
measures the percentage of all possible links that the 
analyst has examined.   
 
 

 
4. Experiment 
 
4.1. Experimental Design 
 

We have conducted two simulation studies of the 
analyst effort. The first study compared the (simulated) 
analyst effort required to achieve a predefined recall 
level for the four methods described in Section 4. The 
second study fixed analyst effort and compared the 
accuracy (recall and precision) achieved for this effort. 

The second study used the four methods described 
above and a random simulation.  Some may wonder 
why a random simulation was examined.  Menzies et 
al. [15] note that software analysis should “start with 
random methods because they are so cheap, moving to 
the more complex methods only when random methods 
fail.”   

 
 

Table 1. CM-1 dataset overview. 
Dataset Name CM-1 
# elements in requirements 
document (high-level) 

235 

# elements in design  
document (low-level) 

220 

# correct links 361 
Total # of retrieved candidate 
links 

36,556 

Total # of correct links 
retrieved 

358 

Recall 0.99 
 Precision 0.001 
Selectivity 0.707 

 
 

 
Table 2. Results of the first experiment. 

 

Method 

Confirme
d True 
Links 

Observed 
Links Precision Recall Selectivity 

 Local, Feedback 321 1595 0.20 0.89 0.03 
Local, No Feedback 321 1713 0.19 0.89 0.03 
 Global, Feedback 321 5399 0.06 0.89 0.10 
 Global, No Feedback 321 6149 0.05 0.89 0.12 

 
 

Table 3. Results of the second experiment. 
 

Method 
Observed 
Links 

Confirmed 
True 
Links Precision Recall 

Local, Feedback 1595 321 0.20 0.89 
Local, No Feedback 1595 326  0.20  0.875  
Global, Feedback 1595 236  0.15  0.65  
Global, No Feedback 1595  227 0.14  0.63  
Local, Random 1595 65 0.04 0.18 
Global, Random 1595 58 0.036 0.16 
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Dataset.  For this study, we used CM-1 [6], a 
sanitized dataset for a NASA scientific instrument.  
The CM-1 dataset from NASA comprises many 
artifacts:  source code, requirements specification, 
test cases, design specification, etc.  In prior 
maintenance-related work, static metrics from CM-1 
were extracted and placed that in the PROMISE 
repository and used in a number of studies.  We did 
not use these static metrics (now commonly 
referred to as CM-1 dataset) for this study.  
Instead, we have used two original CM-1 artifacts: 
the requirements specification and the design 
specification and the RTM of the relationships 
between these two artifacts that we have built and 
submitted it to the PROMISE repository in 
conjunction with [16].  Table 1 lists the basic 
characteristics of the CM-1 dataset and the properties 
of the candidate link list retrieved by the vector space 
retrieval method. 
 

As can be seen from this table, the unfiltered 
candidate link list returned by the automated method 
captures almost all of the correct links, but introduces 
an enormous amount of noise. The four ways of 
simulating analyst behavior are designed to give the 
analyst the opportunity to not consider every single 
retrieved candidate link. 
 
Study 1. Analyst effort for fixed recall.  For the 
first experiment, we elected to compare the effort of 
the simulated analyst at a fixed recall level for the 
four methods described in Section 4. Our original 
intention was to fix our test recall level at 90% (325 
out of 361 correct links retrieved).  However, our 
experiments established that some methods retrieve 
only 321 correct links for recall of 88.9%. We used 
this latter level to compare the analyst effort. 
 
 Study 2. Recall for fixed analyst effort. After 
looking at the results of our first experiment, we 
asked ourselves whether we could get better insight 
into where the analyst effort is wasted by comparing 
the recall obtained from all four methods with fixed 
effort. We considered the recall for our four methods 
at roughly the same effort level. We took 1595 
observed candidate links, the smallest effort from the 
first study, as our benchmark effort for this study.  
 

In addition to comparing the four methods 
described in Section 4 to each other at fixed effort 
level, we also simulated two random selection 
methods and compared the recall at the fixed level 

from our four methods to the random simulation. The 
two random simulations are described below: 
 
Global Filtered Random Selection. In this method, 
we ordered all candidate links in the candidate link 
lists by their similarity score and filtered out the 
bottom 75%. The simulation selected one-at-a-time, 
without return, a link from the remaining top 25% of 
the links. Each link was selected with equal 
probability and 1595 links were selected. 
 
Local Filtered Random Selection. In this method, 
the candidate link list for each high-level element was 
pruned at the 25% level, and then an attempt was 
made to draw 7 or 8 links (1595/220 = 7.25), without 
return, from the pruned list.  
 
We ran each random simulation 1000 times and use 
medians (which proved to be very close to the 
averages in both cases, see Table 4) for comparison. 
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Figure 1. Simulation internals: observed correct 
links vs. all observed links during the four 

simulations 
 
 
4.2. Results 

 
We present the results of our experiments below. In 
Table 2, we show the results of the first experiment. 
As can be seen from this table, the biggest factor in 
determining the analyst effort was whether or not the 
method used local or global sorting. To be more 
precise, our “local” methods simulate the analyst 
providing the software the “I see all the children 
links for this high level link, proceed to the next 
link” command. Table 2 shows that the analyst’s 
ability to stop at the “right place” has a drastic impact 
on the total effort.  In addition, we observe that there 
is a benefit to feedback. The savings in effort are 7% 
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for the “local” methods when feedback is used and 
13% for the “global” methods. 
 
Table 3 shows how each method compares at the 
level of 1595 observed links. We can see, that, as 
expected, random methods cannot produce any 
meaningful results (for the sake of completeness, we 
present some standard descriptive statistics for the 
two random simulations in Table 4).  Figure 1 shows 
the internals for the four non-random simulations we 
ran, plotting the number of correct links observed 
versus the total number of observed candidate links. 
As can be seen from the figure, the local ordering 
methods, in which we simulated the “I see all the 
children” command, find the majority of the correct 
links relatively quickly: at around 1000 observed 
links.  The local simulations discovered around 250 
correct links (for the confirmed precision of 25%). 
For the global ordering methods, correct links are 
observed much more uniformly throughout the first 
2000 observed links, with the rate of observation of 
new correct links tapering off.  
 
 

Table 4. Statistics from the random simulations. 
Method Local, 

Random 
Global, 
Random 

# of simulation runs 1000 1000 
# observed links 1595 1595 
Min # correct links 45 39 
Max # correct links 89 88 
Mean # correct links 64.867 58.67 
Median # correct links 65 58 
St. dev. # correct links 7.72 6.66 
 
 
4.3. Analysis 
 
Looking at our simulations, we can make a number of 
observations. 
 
Knowing when to stop is crucial. The largest 
difference between the simulated analyst effort arises 
in simulations based on local sorting versus 
simulations based on global sorting of the links. The 
key reason for this is our decision to simulate the 
analyst correctly determining when (s)he has seen all 
links for a specific high-level requirement for the 
methods based on traversing individual candidate link 
lists without merging them3.  

                                                           
3 Our intuition is simple: an analyst looking at a 
sequence of links for the same high-level requirement 

 
Feedback helps, to a degree. In our implementation, 
feedback for an individual high-level requirement was 
processed almost instantaneously. Methods that used 
feedback showed an overall improvement of 7% to 
13% in the simulated analyst method.  While this 
improvement is not drastic, it is visible. 
 
Have a system. All four non-random methods were 
designed to simulate a specific structured analyst 
behavior. Our random simulations represent 
unstructured analyst behavior. It is clear from the 
results in Table 3 that unstructured analyst behavior is 
highly inefficient. 
 
This study is still preliminary, and should be viewed 
as a prelude to the study of the behavior of real (not 
simulated) analysts in tracing tasks. The results we 
observed provide guidelines to assist us in building 
user interfaces for the tracing software. They also 
suggest specific types of analyst-software interactions 
that need to be studied in-vivo.  

 
5. Related Work 
 

Though the generation of mappings is a general 
problem, it has mainly been investigated under the 
guise of “requirements traceability” or requirements 
tracing.  Requirements tracing is defined, by Gotel 
and Finkelstein [5], as “the ability to follow the life of 
a requirement in a forward and backward direction.”  
All work to date has concentrated on the recovery or 
generation of traceability links between software 
engineering artifacts (structured as well as non-
structured artifacts).   

       
Antoniol et al. [1] applied the vector space model 

(also known as term frequency-inverse document 
frequency [3]) to the problem of recovering 
traceability links between a textual user’s manual and 
source code and between textual functional 
requirements and source code.  They were able to 
achieve high levels of recall (93 – 100%), but were 
only able to achieve 13 – 18% precision.  Antoniol et 
al. [2] also applied a probabilistic method to the 
problem of recovering links between source code and 
documentation.  Though high precision was achieved 
(83%), it was done at the price of recall (39%).  Note 

                                                                                       
is likely to be in a good position to call it quits at 
some point. The analyst looking at a merged list of 
candidate links may not be able to easily do so. 
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that for the purposes of V&V and IV&V, recall needs 
to be high (90% or higher). 

  Marcus and Maletic [14] applied latent semantic 
indexing (LSI) to the problem of recovering 
traceability links between documentation and source 
code (using the same dataset as Antoniol et al. [1]) 
and found that LSI performs at least as well as the 
vector space model while requiring less pre-
processing of the artifacts.  They achieved recall of 
91 – 100% and precision of 13 – 18%.  When they 
relaxed recall to 71%, they achieved precision of 
43%.  Cleland-Huang et al. developed a method for 
dynamically generating traceability data in a 
speculative manner for performance models that may 
be affected by a proposed change [4].  Links were 
established and maintained between the performance 
models and key requirements data that had been 
derived from the performance models.   

In prior work, we found that simple keyword-
matching methods, applied to the problem of tracing 
textual requirements to textual lower level 
requirements or to design elements, could achieve 
recall of 63% and precision of 39% [7].  This 
required much work on the analyst’s part though, 
such as the building of a keyword ontology and/or the 
manual assignment of keywords to all low and high 
level elements.  Examining the same problem, when a 
thesaurus was added to the vector space model, recall 
was 85% and precision was 40%.  In later work, we 
introduced the notion of analyst feedback.  Here, the 
analyst provides feedback on the top N elements of 
each candidate link list (yes this is a link, no this is 
not a link) and the feedback is used to modify the 
vectors for the high level elements before re-
executing the matching algorithm.  By adding 
feedback, we were able to improve recall to close to 
90% with precision close to 80% (for the MODIS 
dataset) [12].  

The current study focuses on the role of the analyst 
in requirements tracing.  In earlier work [7], we 
undertook a study to compare an analyst: 1) 
performing tracing manually, 2) using a keyword-
based tool, 3) using the output from a keyword-based 
tool, and 4) using our IR tool.  The results showed 
that the analyst and the keyword-based tool achieved 
63% recall and 39% precision, while using our tool 
achieved 85% recall and 40% precision.  Next, we 
developed the requirements for a requirements tracing 
tool [8] and found that a number of the requirements 
had to do with the analyst, specifically the utility sub-
requirement of believability (the analyst feels that the 
tool is useful), the communicability sub-requirement 
of discernability (the tool provides information, the 

process flow, and the results to the analyst in an 
understandable way), and the final requirement of 
endurability (the tool makes the tracing task as 
pleasant as possible).   

Our first study of the analyst was undertaken using 
a small dataset (MODIS) and a number of 
requirements traceability matrices [10].  Some RTMs 
had low recall but high precision, some had low 
precision but high recall, and varied combinations in 
between.  It was our belief that analysts would make 
better feedback decisions if given a high quality RTM 
(high recall and high precision), but would make bad 
decisions if given poor quality RTMs.  What was 
observed was that all analysts made bad decisions 
(threw away true links and kept false positives).  The 
study was very small, however, and general 
conclusions could not be drawn.  We undertook a 
small study with graduate students and found that 
those using our IR tool (called Requirements Tracing 
On-target or RETRO) achieved statistically 
significantly higher recall (70.1% versus 33% for the 
group using no tool) but lower precision (12.8% 
versus 24.2%), but took far less time to complete the 
tracing task (three times less minutes (41.8 minutes 
versus 120.66) [11].  A small usability survey was 
also conducted.  Students found the RETRO features 
that they used to be very useful.  Students used most 
all of the features available to them.  But there 
seemed to be a misunderstanding of the feedback 
feature.   

To our knowledge, our work is the only that has 
been done to examine the role of the user in tracing 
work.  The current work differs from the work 
mentioned above in several ways.  First, it 
specifically focuses on the information that the 
analyst will see.  Second, it examines a number of 
scenarios under which the analyst navigates the 
generated traceability links, without requiring a real 
analyst.  Finally, it provides guidance on how to best 
work with feedback-driven information retrieval 
tracing methods. 
 
 

6. Conclusions and future work 
 
 
The analyst has the final say in many applications, 
such as a maintainer deciding which tool-retrieved 
code components are related to a bug report that is 
being addressed.  In V&V and IV&V, analysts often 
work with tracing tools that retrieve pairs of textual 
artifacts that are deemed relevant.  The analyst can 
save time and reduce errors by using such tools to 
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assist with tracing tasks.  But the analyst has the final 
say and must render decisions on the proposed links.  
As it is difficult to perform studies using real analysts, 
we have explored the use of predicting analyst 
behavior and then examining the impact on quality of 
the final trace and on analyst effort.  The study 
suggests which facilities the analyst should have when 
working with the software, e.g., “I have seen all the 

links for this high-level requirement” command. It also 
suggests that the tracing software should structure its 
interactions with analysts, providing them with 
specific requests in specific order, rather than relying 
on analysts to wade their way through large fields of 
candidate links. 

As mentioned above, this is a preliminary study. 
We have two basic avenues to explore: additional 
simulations to better understand the impact of specific 
tracing methods used to prepare candidate links, and 
in-vivo study of analyst interaction with tracing 
software. The results of the study reported in this 
paper will be used to build analyst guidance into user 
interfaces of the tracing software. 
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