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Abstract 
 

This paper introduces a class-based approach to 
predicting refactoring candidates. Using a selected set of 
static metrics and a weighted ranking method, a tool was 
designed to predict a prioritized list of classes in need of 
refactoring. A study was designed and undertaken to 
compare the performance of the refactoring decision tool 
to that of human reviewers on the task of finding design 
problems that reduce class maintainability. The study 
results indicate that such a refactoring decision support 
tool can greatly assist the software team. The study also 
provided useful information on how to augment the 
functionalities of the refactoring tool.  
 
1. Introduction  

Software maintenance is costly. Research shows that 
software maintenance can consume 90% of the total cost 
of the software life cycle [Banker RD, 1993]. Refactoring 
is an approach to improving the design of software to 
make it easier to maintain without changing its external 
behavior. However, it is not practical for a software team 
to refactor a software application without considering the 
cost and deadlines of the project. In general, the 
following process is followed by a software team 
performing refactoring:   

 Identify code segments that need refactoring, 
 Evaluate or predict the possible cost and benefit 

of each refactoring, 
 Develop a refactoring plan according to the 

results from the above steps and project 
resources, and  

 Apply the refactorings. 
We agree with Opdyke [1992] that the software team 

is the one who makes the final decision and performs the 
actual refactoring. However, proper tool support can 
make the process easier, faster, and more accurate. 
Commercial tools are available for applying refactoring 
automatically. However, effective tool support is still 
needed for the other three steps listed above.    

The objective of refactoring is to reduce complexity of 
certain code units. Programmers refactor a code unit to 
either make it simpler or use indirections (such as 
extracting a method and calling the method) to hide the 

complexity. A code unit’s complexity can increase due to 
its size or logic as well as its interactions with other code 
units. We focus on the previous case in this study, 
examining size and complexity metrics of code units. 

Various techniques have been used to predict the 
maintainability of code and/or to identify code that is not 
easy to maintain (often called “bad smells”). These 
techniques include maintainability models, similarity 
measures, logic queries, etc. [Welker 1995; Simon 2001; 
Mens 2003].  

Our maintainability (or refactoring target) prediction is 
class-based. Our assumption is that the code of a class is 
likely to have the same programmer(s). Moreover, code 
of a class is cohesive. If a programmer solves the 
maintainability problems of a class, the experience gained 
from that can directly benefit the programmer when 
he/she works on the next such problem. 

The paper is organized as follows.  Section 2 presents 
related work.  Section 3 discusses our approach to 
predicting classes in need of refactoring.  Sections 4 and 5 
discuss the design and execution of the study, 
respectively.  Conclusions and future work are presented 
in Section 6. 
 
2. Related Work  

Chidamber and Kemerer [1994] developed and 
evaluated several object-oriented (OO) metrics, referred 
to as the CK metrics, including WMC, CBO, and LCOM.  
Li and Henry [1993] hypothesized and validated the 
relationship between  maintainability and a set of OO 
metrics, including five from the CK metrics and several 
of their own such as MPC (Message-passing coupling) 
and DAC (number of abstract data types defined in a 
class). Welker [1995] suggested measuring software's 
maintainability using a Maintainability Index (MI) which 
is a combination of multiple metrics, including Halstead 
metrics, McCabe's cyclomatic complexity, lines of code, 
and number of comments. Hayes et al. [1998] used 
textual complexity measures to locate segments of code 
that are difficult to change and thus need additional 
documentation. Their tool focused on the location of 
abnormal complexity. The tool also checked for structures 
such as forward declarations and recursion. Hayes and 
Zhao [2005] verified that Effort correlated with 
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maintainability and introduced and validated that the 
RDC ratio (the sum of requirement and design effort 
divided by code effort) is a good predictor for 
maintainability. 

  Fowler [1999] suggested using a set of bad smells 
such as long method to decide when and where to apply 
refactoring. Simon et al. [2001] measured the similarity 
between class members to decide which attributes and 
methods should be put together. They found that 
similarity/distance metrics can identify design 
abnormalities that disobey the cohesion principle and thus 
need refactoring. Mens, Tourwe, and Monuz [2003] 
designed a tool to detect places that need refactoring and 
decide which refactoring should be applied. They do so 
by detecting the existence of "bad smells” using  logic 
queries. 

Our approach differs from the above approaches in that 
it uses a cost-benefit analysis to prioritize the identified 
classes with bad smells That is, after identifying the 
locations/types of refactoring needed, we can predict the 
possible cost of the refactoring and its impact on code 
maintainability. We discuss our approach further in the 
next section. 
 
3. Design of the Tool  

The overall architecture of the maintainability decision 
support tool is shown in Figure 1. The tool is written in C 
and uses EDG’s Java Front End1.  There are four major 
components: Code Repository Analyzer, Maintainability 
Prediction Component, and Refactoring Planning 
Component.  We discuss each in turn. 
  

  
Figure 1. Maintainability decision support tool. 

 
The Code Repository Analyzer is designed to parse the 

source code, discover structural characteristics, and 
collect metrics. We used EDG’s JFE [EDG 2005] in 

                                                 
1 We thank Dr. Stephen Adamczyk and EDG for their generous 
donation of JFE to our research program. 

building this component. JFE performs full syntax and 
semantic analysis of source code and represents the 
source code as a "high-level, tree structured" [EDG 2005] 
intermediate language – i.e., the Abstract Syntax Tree 
(AST) of the source code. The analyzer gets the necessary 
code information (complexity, size, and coupling 
measures) by traversing the tree.   

The collected data are sent to the Maintainability 
Prediction Component. A weighted combination of 
multiple maintainability predictors (including a variant of 
MI (Maintainability Index)), complexity, and size are 
used to rank the classes. We do not combine the raw 
metrics. Instead, we use individual predictors to rank 
classes separately. A ranking matrix is generated for the 
classes to give a comprehensive view of the relative 
maintainability attributes of all the classes. At the same 
time, a weighted sum of the ranks of different predictors 
yields an integrated Relative Maintainability Vector 
(RMV).  The RMV is used as the class-based refactoring 
priority list, to be given to the software team.  
 
3.1 Metrics  
     We focus on size and complexity metrics at this point 
in time.  Class interactions have been left for future work.   

Halstead metrics 2  [Halstead 1977] are computed 
directly from operators and operands in the code. 
Halstead length (total number of operators and operands), 
vocabulary (total number of unique operators and 
operands), and effort are used to represent the length, 
understandability, and complexity of each class. 

Weighted Methods per Class (WMC) is an important 
metric for OO. Assuming Class A has n methods, then:  

  
   WMC  =  ∑   weighti * methodi   
                 i = 1 to n 
where n is the number of all the methods in the class 

[Chidamber 1994]. 
     We used two variants of WMC to represent the 
accumulated complexity and size of a class.  Long 
Method Per Class (LMC) is used to count the number of 
large classes and Complex Method Per Class (CMC) is 
used to count the methods having an undesirable 
cyclomatic complexity [Pressman 2001].  The 
“undesirable” threshold can be set according to different 
project environments.  
 
3.2 Class-based rank    
    Code of a class is designed to have high cohesion. To 
understand and/or modify one part of a class often 
requires one to read, modify, and/or test other parts as 
well. Further, if one member variable or one method is to 

                                                 
2 We are aware that some researchers do not support the use of 
Halstead metrics.  Our work to date has shown them to assist 
greatly in maintainability predictions. 
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be used in an implementation of new functionality, other 
members of the same class are highly likely to be used as 
well. Therefore, to save the overhead load and the cost of 
maintenance for new functionality, bad design problems 
or bad smells in a class should be fixed at the same time, 
if possible. In addition, classes that cost more to maintain 
should be improved first. Class-based rank (or relative 
maintainability) is used to help decide which class 
requires refactoring first.  

When the software team tries to make a decision on 
which classes need refactoring most, the relative 
maintainability is more important to them than the actual 
metrics. This is because different metrics have different 
foci. Ranks of individual metrics give the software team 
an idea of how a class performs based on diverse 
attributes (size, complexity, etc.). Also, those classes that 
get a high rank from the most individual metrics should 
be a high priority for refactoring. Therefore, a 
comprehensive rank is needed -- we call it weighted 
maintainability rank (WMR):  

 
WMR  = ∑   weighti * ranki   
                 i = 1 to n 
where n is the number of selected metrics. 

In the study, we used the weight of 1 for every metric 
with good results.  Varying the weight remains as future 
work. 
 
4. Study Design 

    We were interested in seeing if our tool did a good 
job of predicting classes needing refactoring, in priority 
order.  We designed a study to compare the tool to the 
predictions made by Java programmers.  We wanted to 
study the following questions: 

1. Can programmers identify refactoring candidates? 
Are their results similar to those of the tool? 

2.  What are the differences between programmer 
decision and tool decisions? 

3.  Do the programmers identify the same candidates 
for refactoring? Do they use common criteria? What 
kinds of problems are discovered?  

4.  How much time will programmers spend?  
5. How should we improve our tool to help 

programmers/reviewers?  
A set of Computer Science graduate students (some 

also work as programmers in industry part-time) were 
asked to review Java source code and identify classes 
needing refactoring.  The code had been written as a 
graduate software engineering class project at the 
University of Kentucky. The project provides children 
with speech impediments an entertaining way to practice 
their speech therapy exercises. If the children vocalize in 
the proper pitch and loudness range, rewards are provided 
in the form of interesting animations  

We first had the graduate student volunteers perform 
some pre-reading and complete a short questionnaire.  
Based on their answers, we decided if they could 
participate in the study (some students had no experience 
with Java or maintenance programming and were 
omitted).  We then gave the selected volunteers (seven) 
instructions for the study.  They were instructed to read 
the code and look for “bad smells” (defined in the pre-
reading).  We requested that they record any such bad 
smells found in a list.  We allowed them to select a smell 
from a provided list or to fill in a problem they observed 
that was not in the list.  The volunteers were asked to 
decide which class had the most serious problems and 
should be refactored first. They provided a report to us 
with a prioritized list of all the classes they thought 
needed refactoring.  They also recorded the time that they 
spent reviewing/reading each class. Six students 
completed the study. 

We also ran the tool to generate a class-based priority 
list (the tool does not generate an individual list of bad 
smells). The results from the manual inspection and the 
tool were then compared.   

There are a number of threats to validity to our study.  
A threat to external validity is the use of students versus 
professional programmers.  We tried to limit this threat by 
“vetting” the students.  Also, we had a very small set of 
volunteers.  A possible threat to internal validity is the use 
of various models to measure maintainability.  We used 
the most widely accepted models possible, such as MI. 
 
5. Study Results 

All six reviewers turned in the two requested reports. 
The first one lists individual bad smells or design 
problems they identified in each class. The second one is 
a priority list of classes in need of refactoring. We 
observed that programmers/reviewers used different 
criteria to identify the most important bad smells. For 
example, some looked for unusual size, some looked for 
high complexity, 
 
Table 1. Compare reviewers’ selection with tool’s selection. 

Priority Rv
1 

Rv 
2 

Rv 
3 

Rv 
4 

Rv 
5 

Rv 
6 

To-
ol 

#1 I1 A G A A G A 
#2 F W T P E H LO 

#3 W LO A S G  H 
#4 G V L W H  P 
#5 P S  M LO  F 
#6     P  L 

A - AnimationScreen, F-FileOutPut,  L-LoginScreen, P- PitchAnalyzer, S- 
SessionReport, E- ErrorWindow, G-Graphic, LO - LoudnessAnalyzer, R- 
RegistrationScreen, T - TestScreen, F- FileInputHandler, H - HistoryReport, M - 
MenuScreen,  W- Welcome, I1 – ImagePanel1, I2 – ImagePanel2, L – 
LoginScreen  
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Table 2.   Statistics of collected metrics. 
 Min Max Mean Std. Dev. 
Halstead_L 4 491 203.15 155.2
Halstead_
V 4 36300 1894.7 8098.35

Halstead_
E 0 74762 19353.

3 
23252.8

7

MI 3 125.3
3 62.63 26.99

LMC 0 11 3.75 2.59
CMC 0 5 0.65 1.27

 
Table 3.  Metrics of Class AnimationScreen. 

 
and some were interested in dead code or duplicates. 
However, there was a significant degree of unanimity 
between reviewers, and between the reviewers and the 
tool on class selection.  

Table 1 shows the class selection results of the 
reviewers. The class name abbreviations are shown above 
the table.  The first column gives the priority rank. The 
first row represents six reviewers and the tool (Rv1 
represents Reviewer 1, for example). Any of the other 
cells represent a class on which the reviewer made a 
decision. For example, the cell in the second row and the 
third column has the value “A” and indicates that 
reviewer 2 selected AnimationScreen as the class that 
needs to be refactored first (priority #1).   Table 2 
presents descriptive statistics for the metrics collected.  
We found that 50% (three out of six) of the reviewers and 
the tool agreed that class A is priority #1 for refactoring. 
In fact, 67% (four out of six) of the reviewers put 
AnimationScreen (class “A”) on the priority list. We 
examined the metrics collected for AnimationScreen and 
found that it has the largest value of Halstead Length, 
Halstead Vocabulary, Halstead Effort, and the smallest 
value of MI (the smaller the MI, the worse the 
maintainability). In addition, LMC and CMC of this class 
were above average (Table 3). This indicates both the tool 
and the reviewers identified the most complex class.  

Although only 5 or 6 classes were selected from a total 
of 20 by our reviewers, there are a significant number of 
classes that were selected by both a reviewer and the tool. 
For example, the classes AnimationScreen and 
LoudnessAnalyzer appear in both reviewer 2’s and the 
tool’s priority list (Table 1). 
     Further, we found that Reviewer 5’s list had the most 
in common with that of the tool (Table 4). We did a 
Spearman rank correlation [Wessa 2006] on the common 
set of classes. The correlation value is 0.8, which is

Table 4.  Comparison of reviewer 5’s and tool’s decisions. 
Class Reviewer 5 Tool Rank 

A 1 1 
H 4 3 

LO 5 2 
P 6 4 

 
Table 5.  Kendal tau Rank Correlation. 

Kendall tau Rank Correlation 
Kendall tau 0.67 
2-side p-value 0.308 

significant.  However, our sample size is small and we 
ignored data not in the common set. 
We then did a Kendall tau Rank Correlation test [Wessa 
2006] to measure the “overlap” of Reviewer 5 and the 
tool.  The Kendall tau Rank gave a value of 0.67 and a 2-
sided p-value of 0.308, which is not ideal [Table 5]. 
     Reviewers spent significant time on understanding the 
scope of the source code, reading documents, and reading 
the source code in order to perform this study. Five 
reviewers reported their total time spent, with a minimum 
of 1 hour and a maximum of more than 3 hours.  
     The reviewers were asked to record the time they 
spent on each problem (bad smell) they found (only five 
did so). Table 6 indicates how hard it was for them to 
identify a design problem according to the amount of time 
spent.  In the table, E stands for Easy (<1 minute spent), 
M for Moderate (1 to 5) minutes, and H for Hard (>5 
minutes spent). E+M means one easy problem and one 
moderate problem were found. Each column represents a 
reviewer’s ratings about problems he/she identified on 
classes. For example, the cell in the third row and the 
second column has an element E+M. This means that two 
design problems (one easy, one moderate) were identified 
by reviewer 1 in the  class FileOutput. In  total,   29 
problems 

 
 Table 6.  The difficulty level (approximate time spent) for 

reviewers in finding design problems in classes. 
Class Rv1 Rv2 Rv3 Rv4 Rv6 
Animation Screen  E M E  
FileOutput E+M     
Graphic H  E  M 
HistoryReport     M 
ImagePanel1 E+M     
ImagePanel2 M     
LoginScreen   E M   
MenuScreen    H  
PitchAnalyzer E E  E+M  
RigistrationScreen  M    
SessionReport  E  E  
TestScreen   E   
Welcome E+M E  H  
WriteToFile M E    

Halst- 
ead_L 

Halst- 
ead_V 

Halst- 
ead_E MI LMC CMC 

491 191 74762 37.49 5 2 
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were recorded by the five reviewers (the sixth reviewer 
found 17 problems not shown here). Among them, only 
three (10%) were classified as Hard (more than 5 minutes 
to find). This supports the intuition that code 
reviewers/inspectors are more likely to find easy 
problems and it is possible for them to ignore those 
problems that are hard to find. Bad smells that are hard to 
find are still important, and we think that appropriate 
training and instruction may be necessary to help 
reviewers find these bad smells.  This also provides 
evidence in favor of tool support, especially for industry 
sized projects. On the other hand, reviewers identified 
design problems such as dead code, duplicate code, and 
unused class that our tool is not yet able to identify. This 
encourages us to continue the design and development of 
the tool to that it can identify more individual bad smells.  
  
6. Conclusions and Future Work  

In the study, the results obtained from the tool (which 
focus on size and complexity) had a certain degree of 
agreement with those of the reviewers. This small study 
lends some initial support to the notion that complexity 
and size are among the major factors that add difficulty to 
programmers’ comprehension of Legacy code and can be 
used to predict classes needing refactoring.  We have 
shown that a priority list can be established in an 
automated fashion that contributes to cost-effective 
refactoring planning.  
    We also found that, although reviewers make some 
common decisions on which classes should be refactored 
first, they were often looking for different kinds of design 
problems. It was the case that 28% of the bad smells 
identified by the reviewers were not in the short list of 
bad smell types that we provided them.  Code complexity 
appears to be the code characteristic that leads them to the 
same groups of classes. However, their own backgrounds 
and experiences led them to check for many different 
kinds of bad smells.  This implies that relying on 
programmer review alone could lead to incomplete and/or 
inconsistent class identification.  Therefore, automation 
can help improve the consistency, efficiency, and 
effectiveness of the code reviewing and refactoring 
decision process.  Code reviewing is a time-consuming 
task requiring comprehension and even memorization of 
code.  Appropriate tool support can help reduce this 
overhead cost. 
    In the future, we plan to predict the possible cost of the 
refactoring and its impact on code maintainability.  Cost-
benefit estimation prior to applying refactoring can assist 
with risk management, resource allocation, and planning.   
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