
 1

Predicting Classes in Need of Refactoring: An Application of Static Metrics

 Liming Zhao Jane Huffman Hayes
Department of Computer Science Department of Computer Science

University of Kentucky University of Kentucky
lzhao2@uky.edu hayes@cs.uky.edu

Abstract

This paper introduces a class-based approach to
predicting refactoring candidates. Using a selected set of
static metrics and a weighted ranking method, a tool was
designed to predict a prioritized list of classes in need of
refactoring. A study was designed and undertaken to
compare the performance of the refactoring decision tool
to that of human reviewers on the task of finding design
problems that reduce class maintainability. The study
results indicate that such a refactoring decision support
tool can greatly assist the software team. The study also
provided useful information on how to augment the
functionalities of the refactoring tool.

1. Introduction

Software maintenance is costly. Research shows that
software maintenance can consume 90% of the total cost
of the software life cycle [Banker RD, 1993]. Refactoring
is an approach to improving the design of software to
make it easier to maintain without changing its external
behavior. However, it is not practical for a software team
to refactor a software application without considering the
cost and deadlines of the project. In general, the
following process is followed by a software team
performing refactoring:

 Identify code segments that need refactoring,
 Evaluate or predict the possible cost and benefit

of each refactoring,
 Develop a refactoring plan according to the

results from the above steps and project
resources, and

 Apply the refactorings.
We agree with Opdyke [1992] that the software team

is the one who makes the final decision and performs the
actual refactoring. However, proper tool support can
make the process easier, faster, and more accurate.
Commercial tools are available for applying refactoring
automatically. However, effective tool support is still
needed for the other three steps listed above.

The objective of refactoring is to reduce complexity of
certain code units. Programmers refactor a code unit to
either make it simpler or use indirections (such as
extracting a method and calling the method) to hide the

complexity. A code unit’s complexity can increase due to
its size or logic as well as its interactions with other code
units. We focus on the previous case in this study,
examining size and complexity metrics of code units.

Various techniques have been used to predict the
maintainability of code and/or to identify code that is not
easy to maintain (often called “bad smells”). These
techniques include maintainability models, similarity
measures, logic queries, etc. [Welker 1995; Simon 2001;
Mens 2003].

Our maintainability (or refactoring target) prediction is
class-based. Our assumption is that the code of a class is
likely to have the same programmer(s). Moreover, code
of a class is cohesive. If a programmer solves the
maintainability problems of a class, the experience gained
from that can directly benefit the programmer when
he/she works on the next such problem.

The paper is organized as follows. Section 2 presents
related work. Section 3 discusses our approach to
predicting classes in need of refactoring. Sections 4 and 5
discuss the design and execution of the study,
respectively. Conclusions and future work are presented
in Section 6.

2. Related Work

Chidamber and Kemerer [1994] developed and
evaluated several object-oriented (OO) metrics, referred
to as the CK metrics, including WMC, CBO, and LCOM.
Li and Henry [1993] hypothesized and validated the
relationship between maintainability and a set of OO
metrics, including five from the CK metrics and several
of their own such as MPC (Message-passing coupling)
and DAC (number of abstract data types defined in a
class). Welker [1995] suggested measuring software's
maintainability using a Maintainability Index (MI) which
is a combination of multiple metrics, including Halstead
metrics, McCabe's cyclomatic complexity, lines of code,
and number of comments. Hayes et al. [1998] used
textual complexity measures to locate segments of code
that are difficult to change and thus need additional
documentation. Their tool focused on the location of
abnormal complexity. The tool also checked for structures
such as forward declarations and recursion. Hayes and
Zhao [2005] verified that Effort correlated with

 2

Size

 Maintainability Prediction Model

Complexity Coupling History

 Refactoring Planning

Code Repository

Candidate Classes

maintainability and introduced and validated that the
RDC ratio (the sum of requirement and design effort
divided by code effort) is a good predictor for
maintainability.

 Fowler [1999] suggested using a set of bad smells
such as long method to decide when and where to apply
refactoring. Simon et al. [2001] measured the similarity
between class members to decide which attributes and
methods should be put together. They found that
similarity/distance metrics can identify design
abnormalities that disobey the cohesion principle and thus
need refactoring. Mens, Tourwe, and Monuz [2003]
designed a tool to detect places that need refactoring and
decide which refactoring should be applied. They do so
by detecting the existence of "bad smells” using logic
queries.

Our approach differs from the above approaches in that
it uses a cost-benefit analysis to prioritize the identified
classes with bad smells That is, after identifying the
locations/types of refactoring needed, we can predict the
possible cost of the refactoring and its impact on code
maintainability. We discuss our approach further in the
next section.

3. Design of the Tool

The overall architecture of the maintainability decision
support tool is shown in Figure 1. The tool is written in C
and uses EDG’s Java Front End1. There are four major
components: Code Repository Analyzer, Maintainability
Prediction Component, and Refactoring Planning
Component. We discuss each in turn.

Figure 1. Maintainability decision support tool.

The Code Repository Analyzer is designed to parse the

source code, discover structural characteristics, and
collect metrics. We used EDG’s JFE [EDG 2005] in

1 We thank Dr. Stephen Adamczyk and EDG for their generous
donation of JFE to our research program.

building this component. JFE performs full syntax and
semantic analysis of source code and represents the
source code as a "high-level, tree structured" [EDG 2005]
intermediate language – i.e., the Abstract Syntax Tree
(AST) of the source code. The analyzer gets the necessary
code information (complexity, size, and coupling
measures) by traversing the tree.

The collected data are sent to the Maintainability
Prediction Component. A weighted combination of
multiple maintainability predictors (including a variant of
MI (Maintainability Index)), complexity, and size are
used to rank the classes. We do not combine the raw
metrics. Instead, we use individual predictors to rank
classes separately. A ranking matrix is generated for the
classes to give a comprehensive view of the relative
maintainability attributes of all the classes. At the same
time, a weighted sum of the ranks of different predictors
yields an integrated Relative Maintainability Vector
(RMV). The RMV is used as the class-based refactoring
priority list, to be given to the software team.

3.1 Metrics
 We focus on size and complexity metrics at this point
in time. Class interactions have been left for future work.

Halstead metrics 2 [Halstead 1977] are computed
directly from operators and operands in the code.
Halstead length (total number of operators and operands),
vocabulary (total number of unique operators and
operands), and effort are used to represent the length,
understandability, and complexity of each class.

Weighted Methods per Class (WMC) is an important
metric for OO. Assuming Class A has n methods, then:

 WMC = ∑ weighti * methodi
 i = 1 to n
where n is the number of all the methods in the class

[Chidamber 1994].
 We used two variants of WMC to represent the
accumulated complexity and size of a class. Long
Method Per Class (LMC) is used to count the number of
large classes and Complex Method Per Class (CMC) is
used to count the methods having an undesirable
cyclomatic complexity [Pressman 2001]. The
“undesirable” threshold can be set according to different
project environments.

3.2 Class-based rank
 Code of a class is designed to have high cohesion. To
understand and/or modify one part of a class often
requires one to read, modify, and/or test other parts as
well. Further, if one member variable or one method is to

2 We are aware that some researchers do not support the use of
Halstead metrics. Our work to date has shown them to assist
greatly in maintainability predictions.

 3

be used in an implementation of new functionality, other
members of the same class are highly likely to be used as
well. Therefore, to save the overhead load and the cost of
maintenance for new functionality, bad design problems
or bad smells in a class should be fixed at the same time,
if possible. In addition, classes that cost more to maintain
should be improved first. Class-based rank (or relative
maintainability) is used to help decide which class
requires refactoring first.

When the software team tries to make a decision on
which classes need refactoring most, the relative
maintainability is more important to them than the actual
metrics. This is because different metrics have different
foci. Ranks of individual metrics give the software team
an idea of how a class performs based on diverse
attributes (size, complexity, etc.). Also, those classes that
get a high rank from the most individual metrics should
be a high priority for refactoring. Therefore, a
comprehensive rank is needed -- we call it weighted
maintainability rank (WMR):

WMR = ∑ weighti * ranki
 i = 1 to n
where n is the number of selected metrics.

In the study, we used the weight of 1 for every metric
with good results. Varying the weight remains as future
work.

4. Study Design

 We were interested in seeing if our tool did a good
job of predicting classes needing refactoring, in priority
order. We designed a study to compare the tool to the
predictions made by Java programmers. We wanted to
study the following questions:

1. Can programmers identify refactoring candidates?
Are their results similar to those of the tool?

2. What are the differences between programmer
decision and tool decisions?

3. Do the programmers identify the same candidates
for refactoring? Do they use common criteria? What
kinds of problems are discovered?

4. How much time will programmers spend?
5. How should we improve our tool to help

programmers/reviewers?
A set of Computer Science graduate students (some

also work as programmers in industry part-time) were
asked to review Java source code and identify classes
needing refactoring. The code had been written as a
graduate software engineering class project at the
University of Kentucky. The project provides children
with speech impediments an entertaining way to practice
their speech therapy exercises. If the children vocalize in
the proper pitch and loudness range, rewards are provided
in the form of interesting animations

We first had the graduate student volunteers perform
some pre-reading and complete a short questionnaire.
Based on their answers, we decided if they could
participate in the study (some students had no experience
with Java or maintenance programming and were
omitted). We then gave the selected volunteers (seven)
instructions for the study. They were instructed to read
the code and look for “bad smells” (defined in the pre-
reading). We requested that they record any such bad
smells found in a list. We allowed them to select a smell
from a provided list or to fill in a problem they observed
that was not in the list. The volunteers were asked to
decide which class had the most serious problems and
should be refactored first. They provided a report to us
with a prioritized list of all the classes they thought
needed refactoring. They also recorded the time that they
spent reviewing/reading each class. Six students
completed the study.

We also ran the tool to generate a class-based priority
list (the tool does not generate an individual list of bad
smells). The results from the manual inspection and the
tool were then compared.

There are a number of threats to validity to our study.
A threat to external validity is the use of students versus
professional programmers. We tried to limit this threat by
“vetting” the students. Also, we had a very small set of
volunteers. A possible threat to internal validity is the use
of various models to measure maintainability. We used
the most widely accepted models possible, such as MI.

5. Study Results

All six reviewers turned in the two requested reports.
The first one lists individual bad smells or design
problems they identified in each class. The second one is
a priority list of classes in need of refactoring. We
observed that programmers/reviewers used different
criteria to identify the most important bad smells. For
example, some looked for unusual size, some looked for
high complexity,

Table 1. Compare reviewers’ selection with tool’s selection.

Priority Rv
1

Rv
2

Rv
3

Rv
4

Rv
5

Rv
6

To-
ol

#1 I1 A G A A G A
#2 F W T P E H LO

#3 W LO A S G H
#4 G V L W H P
#5 P S M LO F
#6 P L

A - AnimationScreen, F-FileOutPut, L-LoginScreen, P- PitchAnalyzer, S-
SessionReport, E- ErrorWindow, G-Graphic, LO - LoudnessAnalyzer, R-
RegistrationScreen, T - TestScreen, F- FileInputHandler, H - HistoryReport, M -
MenuScreen, W- Welcome, I1 – ImagePanel1, I2 – ImagePanel2, L –
LoginScreen

 4

Table 2. Statistics of collected metrics.
 Min Max Mean Std. Dev.
Halstead_L 4 491 203.15 155.2
Halstead_
V 4 36300 1894.7 8098.35

Halstead_
E 0 74762 19353.

3
23252.8

7

MI 3 125.3
3 62.63 26.99

LMC 0 11 3.75 2.59
CMC 0 5 0.65 1.27

Table 3. Metrics of Class AnimationScreen.

and some were interested in dead code or duplicates.
However, there was a significant degree of unanimity
between reviewers, and between the reviewers and the
tool on class selection.

Table 1 shows the class selection results of the
reviewers. The class name abbreviations are shown above
the table. The first column gives the priority rank. The
first row represents six reviewers and the tool (Rv1
represents Reviewer 1, for example). Any of the other
cells represent a class on which the reviewer made a
decision. For example, the cell in the second row and the
third column has the value “A” and indicates that
reviewer 2 selected AnimationScreen as the class that
needs to be refactored first (priority #1). Table 2
presents descriptive statistics for the metrics collected.
We found that 50% (three out of six) of the reviewers and
the tool agreed that class A is priority #1 for refactoring.
In fact, 67% (four out of six) of the reviewers put
AnimationScreen (class “A”) on the priority list. We
examined the metrics collected for AnimationScreen and
found that it has the largest value of Halstead Length,
Halstead Vocabulary, Halstead Effort, and the smallest
value of MI (the smaller the MI, the worse the
maintainability). In addition, LMC and CMC of this class
were above average (Table 3). This indicates both the tool
and the reviewers identified the most complex class.

Although only 5 or 6 classes were selected from a total
of 20 by our reviewers, there are a significant number of
classes that were selected by both a reviewer and the tool.
For example, the classes AnimationScreen and
LoudnessAnalyzer appear in both reviewer 2’s and the
tool’s priority list (Table 1).
 Further, we found that Reviewer 5’s list had the most
in common with that of the tool (Table 4). We did a
Spearman rank correlation [Wessa 2006] on the common
set of classes. The correlation value is 0.8, which is

Table 4. Comparison of reviewer 5’s and tool’s decisions.
Class Reviewer 5 Tool Rank

A 1 1
H 4 3

LO 5 2
P 6 4

Table 5. Kendal tau Rank Correlation.

Kendall tau Rank Correlation
Kendall tau 0.67
2-side p-value 0.308

significant. However, our sample size is small and we
ignored data not in the common set.
We then did a Kendall tau Rank Correlation test [Wessa
2006] to measure the “overlap” of Reviewer 5 and the
tool. The Kendall tau Rank gave a value of 0.67 and a 2-
sided p-value of 0.308, which is not ideal [Table 5].
 Reviewers spent significant time on understanding the
scope of the source code, reading documents, and reading
the source code in order to perform this study. Five
reviewers reported their total time spent, with a minimum
of 1 hour and a maximum of more than 3 hours.
 The reviewers were asked to record the time they
spent on each problem (bad smell) they found (only five
did so). Table 6 indicates how hard it was for them to
identify a design problem according to the amount of time
spent. In the table, E stands for Easy (<1 minute spent),
M for Moderate (1 to 5) minutes, and H for Hard (>5
minutes spent). E+M means one easy problem and one
moderate problem were found. Each column represents a
reviewer’s ratings about problems he/she identified on
classes. For example, the cell in the third row and the
second column has an element E+M. This means that two
design problems (one easy, one moderate) were identified
by reviewer 1 in the class FileOutput. In total, 29
problems

 Table 6. The difficulty level (approximate time spent) for

reviewers in finding design problems in classes.
Class Rv1 Rv2 Rv3 Rv4 Rv6
Animation Screen E M E
FileOutput E+M
Graphic H E M
HistoryReport M
ImagePanel1 E+M
ImagePanel2 M
LoginScreen E M
MenuScreen H
PitchAnalyzer E E E+M
RigistrationScreen M
SessionReport E E
TestScreen E
Welcome E+M E H
WriteToFile M E

Halst-
ead_L

Halst-
ead_V

Halst-
ead_E MI LMC CMC

491 191 74762 37.49 5 2

 5

were recorded by the five reviewers (the sixth reviewer
found 17 problems not shown here). Among them, only
three (10%) were classified as Hard (more than 5 minutes
to find). This supports the intuition that code
reviewers/inspectors are more likely to find easy
problems and it is possible for them to ignore those
problems that are hard to find. Bad smells that are hard to
find are still important, and we think that appropriate
training and instruction may be necessary to help
reviewers find these bad smells. This also provides
evidence in favor of tool support, especially for industry
sized projects. On the other hand, reviewers identified
design problems such as dead code, duplicate code, and
unused class that our tool is not yet able to identify. This
encourages us to continue the design and development of
the tool to that it can identify more individual bad smells.

6. Conclusions and Future Work

In the study, the results obtained from the tool (which
focus on size and complexity) had a certain degree of
agreement with those of the reviewers. This small study
lends some initial support to the notion that complexity
and size are among the major factors that add difficulty to
programmers’ comprehension of Legacy code and can be
used to predict classes needing refactoring. We have
shown that a priority list can be established in an
automated fashion that contributes to cost-effective
refactoring planning.
 We also found that, although reviewers make some
common decisions on which classes should be refactored
first, they were often looking for different kinds of design
problems. It was the case that 28% of the bad smells
identified by the reviewers were not in the short list of
bad smell types that we provided them. Code complexity
appears to be the code characteristic that leads them to the
same groups of classes. However, their own backgrounds
and experiences led them to check for many different
kinds of bad smells. This implies that relying on
programmer review alone could lead to incomplete and/or
inconsistent class identification. Therefore, automation
can help improve the consistency, efficiency, and
effectiveness of the code reviewing and refactoring
decision process. Code reviewing is a time-consuming
task requiring comprehension and even memorization of
code. Appropriate tool support can help reduce this
overhead cost.
 In the future, we plan to predict the possible cost of the
refactoring and its impact on code maintainability. Cost-
benefit estimation prior to applying refactoring can assist
with risk management, resource allocation, and planning.

7. Acknowledgments
 Thanks to EDG Group for providing JFE. Thanks to the
graduate student volunteers for participating in the study.

8. References
Chidamber, S., Kemerer, C., A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 1994.
20(6): p. 476–493.

EDG Group, JFE, a Front End for the Java
Language ,http://www.edg.com/jfe.html, 2005

Fowler, M., Beck, K., Brant,J., Opdyke,W., Roberts,D.,
Refactoring: Improving the Design of Existing Code. 2001.

Halstead, M.H., Elements of Software Science. Operating, and
Programming Systems Series, 1977.

Hayes, J.a.Z., L, Maintainability Prediction: A Regression
Analysis of Measures of Evolving Systems. IEEE 21th
International Conference on Software Maintenance, Budapest,
Hungary, 2005.

Huffman, J., Burgess, C., Partially Automated In-Line
Documentation (PAID). IEEE Conference on Software
Maintenance, ICSM 1988,IEEE Computer Society: Phoenix,
AZ, 1998: p. 60-65.

Hayes, J., Mohamed, N., Gao, T., The Observe-Mine-Adopt
Model: An Agile Way to Enhance Software Maintainability.
Journal of Software Maintenance and Evolution: Research and
Practice, 2003. 15(5): p. 297 – 323.

Kafura, D., Reddy, R., The use of software complexity metrics
in software maintenance. IEEE Transactions on Software
Engineering, 1987. 13(3): p. 335–343.

Patel Veer, Building a Static Analysis Tool for Java Programs,
Master’s Project Report, University Of Kentucky, April 2004

Pressman, R.S., Software Engineering: A Practitioner's
Approach. 5th ed. 2001.

Li, W., Henry, S., Object-oriented metrics that predict
maintainability. Journal of Systems and Software, 1993. 23(2):
p. 111-122.

Mens, T., Tourwé, T., Muñoz, F., Beyond the Refactoring
Browser: Advanced Tool Support for Software Refactoring.
Proceedings of the International Workshop on Principles of
Software Evolution IWPSE 2003, 2003.

Opdyke, W.F., Refactoring Object-Oriented Frameworks, in
Department of Computer Science. 1992, Univerisity of Illinois
at Urbana-Champaign: Urbana,IL. p. 142.

Welker, K., Oman, P.W., Software maintainability metrics
models in practice. Journal of Defense Software Engineering,
1995. 8(11): p. 19-23.

Wessa, P. (2006), Free Statistics Software, Office for Research
Development and Education, version 1.1.18, URL
http://www.wessa.net/

