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Abstract—This research extends an existing source code change 
taxonomy that was designed to analyze change coupling. The 
extension expands change types related to statements in order to 
achieve more granular data about the type of statement that is 
changed. The extended taxonomy is evaluated to determine if it 
can be applied to software fault analysis. We found that the 
extended change types occur consistently and with high 
frequency in fault fixes for Eclipse 2.0 and 3.0. Faults were then 
clustered according to the source code changes and analyzed. We 
found that the types and sizes of clusters are highly correlated, 
indicating some consistency in the patterns of the fault fixes. 
Finally, we performed an initial investigation to determine 
whether faults in the same cluster have similar characteristics. 
Our results indicate that many of the change types can be used to 
characterize the type of fault that has been fixed. However, some 
of the change types obfuscate the true nature of the fix. Ideas for 
improving the taxonomy based on these findings are provided. 

Index Terms—Fault classification, change taxonomy, 
clustering, source code analysis. 

I. INTRODUCTION 
Software fault classification schemes have been used to 

guide process improvement [1]–[3], prevent defects [4], 
improve software interface design [5], [6], improve testing [7]–
[9] and analyze security breaches [10]. Despite the benefits of 
using a software fault classification scheme, it is not yet 
common practice in industry. Practitioners find that some faults 
are difficult to classify, and that training and discipline are 
necessary to get accurate results [11]. Tool support could 
improve the accuracy and efficiency of the software fault 
classification process. 

 This research investigates the extension and application of 
fine-grained source code changes to the analysis of software 
faults. Fluri et al. introduced ChangeDistiller, a tool that can 
identify the fine-grained source code changes from two 
versions of source code [12]. The algorithm and change 
taxonomy implemented in ChangeDistiller are designed to 
analyze change couplings [12], [13]. A version of 
ChangeDistiller is available under an open source license1. The 
change taxonomy consists of more than forty change types. 
Four of these change types identify the insert, update, delete, or 
re-ordering of a statement. In order to extend the taxonomy, we 

                                                           
1 https://bitbucket.org/sealuzh/tools-changedistiller/ 

expand these four change types by appending the type of 
statement that was changed.  

The first contribution of this research is an extension to the 
change taxonomy developed by Fluri and Gall [13] that allows 
the taxonomy to be applied to the analysis of software faults. 
We demonstrate that the new change types occur often in fault 
fixes for two versions of the Eclipse software project.  We also 
find that the frequency of occurrence is correlated, indicating a 
consistency in the types of fixes that are applied to the two 
versions of the software.  

A second contribution of the study is a technique to cluster 
faults according to the syntactic similarity of the fix in order to 
validate that the taxonomy. A vector of the extended change 
types and their frequency is used as input. Cosine similarity is 
used as the internal similarity measure. The resulting clusters 
occur consistently in two versions of Eclipse and provide 
groups of fault fixes with similar syntax. The clustering method 
chosen also reduces noise in the data by creating a single, low 
similarity cluster with data that does not match other clusters.  
This allows a random selection of faults from each cluster for 
manual analysis.   

A third contribution of this study is the identification of 
limitations in the extended change taxonomy. We find that 
some clusters contain faults that are well characterized by the 
dominant change types for that cluster. For example, the faults 
that we randomly sampled in the condition expression change 
cluster were logic faults. On the other hand, some clusters 
contain faults where the change type obfuscates the primary 
characteristics of the fault. As an example, the update variable 
declaration change type does not differentiate between an 
update to a declaration where a variable is initialized with a 
method call and an update to a declaration where the variable is 
initialized with a constant. We report our findings and suggest 
future work to improve the change taxonomy in the context of 
software fault analysis. 

A minor contribution of this work is additional data on the 
nature of software fault fixes. Pan et al. introduced bug fix 
patterns that cover 45.7%-63.3% of the total fault fix hunk 
pairs in seven open source java projects [14]. Their study found 
the frequency of these patterns to be surprisingly consistent, 
concluding that developers have difficulty with specific code 
situations at a highly consistent rate. Hamill and Goševa-
Popstojanova reported that requirements faults and coding 
faults represent 33% of the total faults each [15]. Furthermore, 



they grouped projects by the number of releases and compared 
their results with three other studies. They conclude that coding 
faults are significant, that interactions between components 
cause problems, and that the remaining defect types are not 
major causes of problems and may be domain specific. Our 
investigation uncovered and validated a strong consistency in 
the syntax used to correct software faults in two major versions 
of Eclipse. The occurrence of particular syntactical change 
types and the patterns of syntax changes that were clustered 
both exhibit this consistency. 

IEEE defines a software fault as an “incorrect step, process 
or data definition in a computer program” [16]. The term defect 
is used synonymously with fault by some researchers. A fault 
leads to a failure when the software does not perform to 
specifications. The term bug is ambiguous, and may refer to a 
fault or the resulting failure. We avoid the use of the term bug 
as much as possible, but it may be used to refer to the 
documentation of a fault in fault tracking databases such as 
Bugzilla2.  

The paper is organized as follows. Section 2 presents our 
motivation to improve software fault classification. Section 3 
explains the research approach for this study. In Section 4 we 
present our validation of the extended change taxonomy. 
Threats to validity are presented in Section 5. Related work is 
discussed in Section 6. Future work is discussed in Section 7. 

II. MOTIVATION  
Despite multiple advantages that have been documented for 

software fault classification, the classification of faults is not a 
mainstream practice.  Fault classification data could also be 
useful in software engineering research.  For example, which 
types of faults are most easily predicted by fault prediction 
models?  How does the prediction of specific fault types vary 
with different features?   What is the relationship between the 
fault type, and the type of component where a fault may occur 
(aka Fault Link[17], [18] )?  Research questions such as these 
are all faced with a significant barrier to entry due to the lack of 
data sets with classified fault information.   

Our proposed solution to this problem is a decision support 
system (DSS) that can aid a developer or researcher with the 
classification of software faults.  This section describes our 
vision for the DSS and relates the current research to this effort. 

The fault classification process begins when the developer 
commits a fix for a software fault.  The abstract syntax tree for 
the source code before and after the fix is instantiated and 
compared.  This comparison results in a collection of fine-
grained source code changes that can be used as input to the 
system, as depicted in Fig 1.  The extended change types in this 
research form a basis for the input to the decision support 
system. 

The user is presented with a view to show the differences in 
the source code alongside suggestions for the most appropriate 
fault type.  The fault type suggestions are provided by a 
machine learning algorithm that is trained from historical data.  

                                                           
2 http://www.bugzilla.org/ 

The resulting selection is stored and may be used as additional 
training data. 

 

 
Fig. 1.  A Decision Support System for Fault Classification 

III. APPROACH 
The approach is divided into data collection and clustering.  

A. Data Collection 
This study builds on the Eclipse fault data that was used by 

Krishnan et al. to evaluate change predictors in a software 
product line [19]. Eclipse 2.0 and Eclipse 3.0 were selected for 
this study. Each fault is processed according to a simple 
workflow. File revisions before and after each fault fix are 
retrieved from the CVS source code repository and stored 
locally.  

The fine-grained source code changes are extracted for each 
pair of files using the ChangeDistiller tool [20]. Fluri et al. 
describe the change distilling process, where the abstract 
syntax tree of each revision of the source code are compared 
and source code changes are extracted [12]. These source code 
changes are stored in a database with all of the contextual 
information that is provided by ChangeDistiller. Contextual 
information includes the name and type of the source code 
entity that was changed with its location in the file, the parent 
entity of the changed entity, and the parent entity of before the 
source code change.  

The contextual information collected by ChangeDistiller 
allows the extension of the statement delete, statement insert, 
statement update, and statement ordering change change types. 
We use the changed entity information available from the 
ChangeDistiller API to identify the type of statement that was 
altered, such as an if statement or method invocation. All of the 
information for each change is recorded in an SQL database 
and the extension is performed through the use of an SQL 
script. A database trigger is used to append the changed entity’s 
type to the change type. This occurs for the statement insert, 
statement update, statement delete, and statement ordering 
change types. For example, a record with a change type of 
statement insert and a changed entity of method invocation will 
result in an extended change type of statement insert method 
invocation. We translate this value to insert method call for 
readability. Once the database is populated with all of the 
source code changes, a query is used to collect the type and 



count of source code changes that are recorded for each fault in 
the dataset.  

B. Clustering 
The input to the clustering process is a vector.  The features 

of the vector are the extended change types.  One hundred and 
one extended change types were present in the Eclipse 2.0 
dataset and one hundred and nine change types were present 
for Eclipse 3.0.  Space limitations do not allow the enumeration 
of all features, but the most significant features are shown in 
the legend of Fig 4.  The extended change types are shown in 
bold. 

The CLUTO clustering toolkit is used to perform clustering 
of the data [21]. CLUTO was selected based on its inclusion of 
cosine similarity as a distance measure and the visualization 
features that aid in the analysis of the clusters. CLUTO creates 
a hierarchical clustering solution when the repeated bisection 
approach is used [22]. The hierarchical solution provides views 
of the data at different levels of granularity, and in our case 
allows us to compare hierarchies in data from multiple datasets.  

All documents are initially partitioned into two clusters. 
One of the clusters is selected and bisected. This process is 
repeated k-1 times to arrive at k clusters. CLUTO provides 
seven different criterion functions that can be used to guide the 
clustering process. A simple, greedy scheme is used to 
optimize the selected criterion function [23]. During multiple 
iterations of refinement, each instance in a cluster is visited in 
random order and moved to the cluster that improves the 
criterion function’s value. This iterative refinement is repeated 
until no instances are moved. In order to avoid the selection of 
a local maximum or local minimum, the entire process is 
repeated multiple times and the best solution is selected. The 
default value of ten iterations was used in this study.  

CLUTO offers multiple criterion functions that can be used 
in clustering. Our purpose in clustering is to group faults with 
similar syntactic changes.  The I1 and I2 criterion functions 
maximize internal similarity, so we limited our evaluation to 
these criterion functions. I1 maximizes the sum of the average 
pairwise similarities between the instances in the cluster. I2 
maximizes the similarity between each instance and the 
centroid of the cluster, similar to the k-means algorithm [21]. 

CLUTO provides metrics to aid in cluster analysis. For 
each cluster, the internal similarity (iSim) and external 
similarity (eSim) are reported, along with their standard 
deviations (iSDev and eSDev). The internal similarity is the 
average similarity between all objects of the cluster. An 
internal similarity near one represents a “tight” cluster. We 
focus our evaluation of clusters on the internal similarity since 
we are trying to group software fixes with similar syntax. The 
external similarity is the average similarity between the objects 
of each cluster with the rest of the objects. An external 
similarity near zero represents a cluster that is well-separated 
from other clusters in the data set.  We report the external 
similarity but do not use it for evaluation. 

CLUTO reports a number of features that account for the 
internal similarity of a particular cluster. These are referred to 
as descriptive features [21]. A percentage is provided with each 
feature. This allows us to make statements such as “Condition 

expression changes account for 94.7% of the similarity for 
instances in cluster 1.” The descriptive features are used in this 
study to characterize and label each of the clusters and make a 
conjecture about the types of faults that belong to the group. 
Labeling of the clusters is entirely based on the statistical 
prominence of the features in the cluster, and not based on 
subjective evaluation of the results.  

IV. VALIDATION 
We perform four main tasks during our analysis of the 

extended change types. For the first task, we investigate the 
most common change types in fault fixes for Eclipse 2.0 and 
3.0. We then compare the percentage occurrence of the top 12 
change types in both versions of the software to determine if 
the occurrence is consistent. In the second task we evaluate the 
I1 and I2 criterion functions to determine the most appropriate 
criterion function for clustering the fault data. Next, we 
compare the clusters of Eclipse 2.0 and Eclipse 3.0 to 
determine whether there is consistency in the clustering of 
faults. Finally, we perform a manual inspection of a subset of 
the faults to investigate the usefulness of the clusters for 
analyzing faults. Although our manual inspection includes too 
few faults to make any strong conclusions, we identify several 
areas of improvement based on the evaluation.   

A. Frequency of Change Types in Fault Fixes 
In this section we evaluate the frequency of extended 

change types in software fault fixes as compared to the original 
change taxonomy. The top twelve change types that are 
extracted from fault fixes in Eclipse 2.0 and 3.0 are the same, 
and are presented in Table I with frequency of occurrence.   

TABLE I.  TOP TWELVE CHANGE TYPES IN FAULT FIXES 

Change Type Eclipse 2.0 Eclipse 3.0 
 Commits Percent Commits Percent 
Insert If * 1512 52.39% 3415 52.21% 
Insert Method Call * 1391 48.20% 3039 46.46% 
Insert Var Decl * 1145 39.67% 2637 40.31% 
Statement Parent Chg 1098 38.05% 2555 39.06% 
Add Functionality 979 33.92% 2205 33.71% 
Update Method Call * 958 33.19% 2095 32.03% 
Insert Assignment * 937 32.47% 2238 34.21% 
Delete If * 934 32.36% 2239 34.23% 
Delete Method Call * 861 29.83% 1883 28.79% 
Insert Return * 777 26.92% 1750 26.75% 
Update Var Decl * 734 25.43% 1850 28.28% 
Cond Expr Change 731 25.33% 1853 28.33% 

 
The first column indicates the change type. Change types 

that were introduced by our extension to the taxonomy are 
denoted by an asterisk (*). The second and fourth columns 
provide the number of commits that are associated with a fault 
fix that contained at least one instance of the change type for 
each version of the software. The third and fifth columns 
provide a percentage of the total number of commits that 
include the change type.  

The total number of extended change types in this list 
provides evidence that the extended change types provide 
additional granularity that is useful in the analysis of software 
fault fixes. The change types occur with surprising consistency 



between the two versions.  This led us to question whether the 
frequency between the two versions is consistent. The 
following hypotheses are used for investigation. 

H0: There is no significant correlation in the frequency 
of extended change types in Eclipse 2.0 and 
Eclipse 3.0 (α=0.05).  

HA: The frequency of extended change types in 
Eclipse 2.0 and Eclipse 3.0 are correlated 
(α=0.05). 

The data is not normally distributed, so the non-parametric 
Wilcoxon signed rank test is performed to test the hypothesis. 
The test was performed against the number of commits for 
each extended change type in the dataset.  The test indicates 
that there is no significant difference in the frequency of the 
change types, with a p-value of 0.0005. We reject H0 in favor 
of the alternative and conclude that the occurrence of change 
types is consistent in these two versions of the software. 

B. Evaluation of Criterion Functions 
In order to proceed with the clustering and inspection of the 

faults, we must choose the most appropriate criterion function.  
We limit our selection to the I1 and I2 criterion functions, since 
these functions maximize the internal similarity of the clusters. 
Clustering is performed for fault data for Eclipse 2.0 and 
Eclipse 3.0. We repeat the clustering for all values of k from 2 
to 20. The number of fault types in a fault taxonomy should be 
manageable and not too large [24]. Based on this 
recommendation, we expect there to be seven to ten fault types. 
We choose a broad range of numbers to be inclusive. We use 
the following hypotheses for investigation. 

 
H0: There is no difference in the mean internal 

similarity of clusters when using the I1 and I2 
criterion functions (α=0.05).  

HA: The mean internal similarity of clusters when 
using the I1 criterion function is greater than the 
mean internal similarity of clusters when using the 
I2 criterion function (α=0.05). 

 
The mean internal similarity for each of these methods is 

presented in Table II.  The number of clusters, k, is shown in 
the first column.  The remaining columns report the internal 
similarity for each method, for each version. A graph of these 
values for the Eclipse 2.0 dataset is presented in Fig. 2.  A 
similar graph for Eclipse 3.0 is displayed in Fig. 3. 

We perform a one-tail paired samples Wilcoxon signed 
rank test on the similarity data for I1 and I2 to evaluate the 
hypothesis. A paired t-test was considered, but the data does 
not pass a test for normality, and thus the non-parametric test is 
used. We perform the test independently for both versions of 
Eclipse.  For Eclipse 2.0, the p-value = 3.815e-06 and for 
Eclipse 3.0, the p-value = 3.624e-05.  In both cases we are able 
to reject the null hypothesis in favor of the alternate hypothesis. 

Zhao and Karypis provide an analysis of document 
clustering solutions using the I1 and I2 criterion functions in 

their comparison of criterion functions [23]. In general, all 
criterion functions have different sensitivities based on the 
tightness of the clusters and the degree of balance in the 
resulting solution. Zhao and Karypis analyze the I1 and I2 
functions to explain how the I1 criterion function can lead to 
several pure, tight clusters and a single large, poor quality 
cluster. This poor quality cluster is referred to as a “garbage 
collector” and results from the function’s tendency to exclude 
peripheral documents from the pure clusters.  

TABLE II.  MEAN INTERNAL SIMILARITY 

 Eclipse 2.0 Eclipse 3.0 
k I1 I2 I1 I2 
2 0.292 0.282 0.297 0.289 
3 0.329 0.317 0.333 0.322 
4 0.404 0.401 0.412 0.415 
5 0.475 0.429 0.439 0.443 
6 0.497 0.449 0.526 0.468 
7 0.517 0.462 0.546 0.494 
8 0.535 0.487 0.551 0.510 
9 0.561 0.495 0.566 0.528 
10 0.567 0.499 0.571 0.531 
11 0.577 0.506 0.584 0.539 
12 0.580 0.503 0.591 0.571 
13 0.584 0.511 0.601 0.569 
14 0.593 0.514 0.612 0.574 
15 0.597 0.521 0.614 0.576 
16 0.602 0.543 0.617 0.580 
17 0.606 0.549 0.601 0.585 
18 0.607 0.555 0.604 0.587 
19 0.621 0.561 0.615 0.599 
20 0.624 0.567 0.622 0.630 

 

 
Fig. 2.  Mean Internal Similarity for Eclipse 2.0 
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Fig. 3.  Mean Internal Similarity for Eclipse 3.0 

Zhao and Karypis provide an analysis of document 
clustering solutions using the I1 and I2 criterion functions in 
their comparison of criterion functions [23]. In general, all 
criterion functions have different sensitivities based on the 
tightness of the clusters and the degree of balance in the 
resulting solution. Zhao and Karypis analyze the I1 and I2 
functions to explain how the I1 criterion function can lead to 
several pure, tight clusters and a single large, poor quality 
cluster. This poor quality cluster is referred to as a “garbage 
collector” and results from the function’s tendency to exclude 
peripheral documents from the pure clusters.  

Zhao and Karypis conclude that this property of the I1 
criterion function may be useful in noisy data sets [23]. This 
helps explain the superiority of the I1 criterion function in our 
experiment, and suggests that more analysis of the instances in 
the “garbage collector” may help refine analysis for less-
frequent faults.   

C. Consistency of Clusters for Eclipse 2.0 and 3.0 
In this section we analyze the consistency of the clustered 

fault fixes for Eclipse 2.0 and Eclipse 3.0 at k=10. We choose 
this value of k due to similarities in the descriptive features 
across the two versions of Eclipse. The groups appear to 
stabilize at this value of k. Ten is also on the high end of the 
number of fault classifications that are recommended by best 
practices [24]. We label each cluster based on the descriptive 
features reported by CLUTO. Since the top five descriptive 
features of each cluster are reported, we use a threshold value 
of 10% for determining whether a feature is significant.  

The cluster features, sizes, and similarities are reported in 
Table III. The first row reports on the clusters that are 
described by the update of a variable declaration. In Eclipse 
2.0, this cluster included 94 faults, while in Eclipse 3.0 the 
cluster includes 261. The last row of the table contains totals 
for the number of faults in each data set.  

TABLE III.  COMPARISON OF CLUSTERED FAULTS 

 
Eclipse 2.0 Eclipse 3.0 

Cluster  
(Descriptive Features) Size iSim Size iSim 
Upd Var Decl 94 0.789 261 0.724 
Cond Expr Chg 139 0.708 244 0.834 
Add Func 132 0.678 441 0.599 
Upd Method Call 266 0.663 494 0.654 
Ins If + Ins Return 164 0.58 0 - 
Ins If + Stmt Parent Chg 446 0.57 908 0.584 
Ins Meth Call 434 0.566 756 0.582 
Del Meth Call  
+ Ins Meth Call 279 0.525 669 0.513 
Ins If + Ins Meth Call  
+ Ins Var Decl  554 0.504 1049 0.515 
Ins Assign  
+ Upd Assign 376 0.084 706 0.128 
Ins Assign + Ins If 0 - 567 0.579 

Total 2884 
 

6095  
Notice that Eclipse 2.0 has a cluster described by the 

insertion of if and return statements, while Eclipse 3.0 has a 
cluster that is described by the insertion of assignment and if 
statements. In order to compare the clustering solutions, we 

treat these as empty clusters in the versions where they do not 
occur. We use the following hypotheses for investigation. 

H0: There is no significant correlation in the clustering 
solutions of Eclipse 2.0 and Eclipse 3.0 at k=10 
(α=0.05).  

HA: The clustering solutions of Eclipse 2.0 and 
Eclipse 3.0 at k=10 are correlated (α=0.05). 

 
To test the hypothesis, Pearson’s correlation coefficient is 

calculated. A Shapiro-Wilk test for normality was performed 
to verify that the data is normally distributed. The value of r 
for the data is 0.778, with a p-value = 0.004, allowing us to 
reject the null hypothesis and conclude that the cluster types 
and sizes are correlated. 

This correlation in the patterns of the faults is consistent 
with the work completed by Pan et al. in their analysis of bug 
fix patterns [14]. Our hope is that the syntax of the fix can be 
used to determine a fault type. Fault taxonomies are 
sometimes utilized to measure where faults are injected for 
process improvement. Chillerage et al. demonstrated this use 
with ODC [1]. If the syntax of the fix is an indicator of the 
fault type, this consistency could also support the findings of 
Hamill and Goševa-Popstojanova [15]. They found 
consistency in where faults were introduced across multiple 
studies, and concluded that coding faults were a significant 
source of faults.  

D. Manual Inspection of Faults in Each Cluster 
In this section we present clustering results on Eclipse 2.0 

fault fixes using the I1 criterion function and setting k=10.  
Only Eclipse 2.0 is considered in this section. The Eclipse 2.0 
dataset consists of 101 fine-grained source code change types 
after expanding statement insert, update, delete, and ordering 
change types and eliminating changes to comments and source 
code documentation. There are 2884 faults in the dataset with 
Java source code changes. Faults with zero Java source code 
changes, e.g., those requiring only changes to properties or xml 
configuration files, are not included in the analysis. CLUTO 
reports a number of metrics for the clusters. These metrics are 
presented in Table IV.  

TABLE IV. CLUSTER SUMMARY 

Cluster Id Size iSim iSDev eSim eSDev 
0 94 0.789 0.124 0.077 0.052 
1 139 0.708 0.134 0.112 0.073 
2 132 0.678 0.125 0.129 0.058 
3 266 0.663 0.136 0.118 0.069 
4 164 0.58 0.084 0.212 0.073 
5 446 0.57 0.093 0.203 0.065 
6 434 0.566 0.091 0.208 0.066 
7 279 0.525 0.09 0.207 0.084 
8 554 0.504 0.082 0.246 0.059 
9 376 0.084 0.057 0.083 0.081 

The CLUTO manual provides a full description of these 
metrics [21]. A summary is presented here. The Cluster Id is a 
zero-based integer assigned to each cluster. The Size is the 
number of faults that were assigned to the cluster. The column 
labeled iSim is the mean internal similarity of the faults in the 



cluster. The column labeled iSDev is the standard deviation of 
the mean internal similarities. Similarly, the eSim column is the 
mean similarity of the faults in the cluster with the faults that 
are not in the cluster, or the external similarity. The eSDev 
column is the standard deviation of the mean external similarity 
for the faults in the cluster. The clusters are ranked by 
subtracting the external similarity from the internal similarity 
and arranging them in decreasing order. This positions tight, 
distinct clusters at the top of the list. 

CLUTO also reports descriptive and discriminating features 
for each cluster. Descriptive features are reported with the 
feature name and a percentage score. The percentage indicates 
the amount of similarity in this cluster that can be attributed to 
the descriptive feature. Likewise, discriminating features report 
a percentage that describes the amount of the dissimilarity with 
other clusters that can be explained by the discriminating 
feature [21]. 

The CLUTO toolset provides tools to visualize clustering 
results [21]. A modified version of the cluster plot visualization 
for the results that we manually analyzed is presented in Fig. 4. 
The columns in the visualization are the clusters, with the size 
of each cluster in parentheses. The tree structure aids in 
understanding the relationships between clusters. For example, 
cluster 6 and 7 are very similar clusters, and contain similar 
source code changes. The rows of the visualization provide a 
subset of the 101 source code changes that were used as 
features during the clustering process. The darkness of the cells 

is based on the intensity of the feature within each cluster. For 
example, in the first column we see that cluster 5 is described 
by the statement parent change and insert if statement change 
types. The label for descriptive features is repeated to the left of 
each occurrence. As an example, Cluster 1, on the far right of 
the illustration, is described by conditional expression changes 
(COND EXPR CHG).  

For each cluster we present internal clustering metrics, 
features that explain the clusters, and then conduct a manual 
inspection of five to eight faults. We randomly selected the 
faults that were manually inspected from each of the clusters. 
The fault reports for these faults are available on the Eclipse 
foundation Bugzilla web site.3 A description of our manual 
assessment of each individual fault is available online for 
interested readers (http://selab.netlab.uky.edu/Kidwell-Hayes-
Eclipse_2-0-Fault-Inspection.pdf). 

1) Cluster 0 – Update Variable Declaration 
Cluster 0 is the tightest and smallest cluster in the selected 

solution. The update variable declaration change type explains 
over 98% of the similarity of the faults in the cluster. We 
expect faults in this cluster to represent faults where a variable 
is either uninitialized or incorrectly initialized.  

Two of the five faults in this category fell in this expected 
category (10483 and 16828). In Bug 11110, a condition 
expression change is edited to check for null references. A 
portion of the change is provided in Fig. 5. The change requires 
the intermediate variable window to be added on the new line 

                                                           
3 https://bugs.eclipse.org/bugs/ 

 
 
 

 
Fig. 4. Visualization of Clusters for Eclipse 2.0 where k=10 using I1 criterion function. 

 

Fig. 5. Fault fix to check for Null Pointer Exception in Bug 11110 

 

https://bugs.eclipse.org/bugs/


167. The window variable is used in the new condition on the 
new line for 168. This change is obfuscated because it occurs in 
a variable declaration for an anonymous class, an instance of 
Runnable that is declared on line 165.  

The fix for Bug 18923 includes variable name changes that 
cause this fault to belong to this cluster, but do not characterize 
the fault. Bug 23824 appears to be an interface fault due to a 
cast or incorrect argument. In this case the call occurs in a 
variable declaration and is not detected. 

The unexpected faults in this cluster indicate that updates to 
variable declarations can hide important syntactical details that 
are necessary for fault analysis.  

2) Cluster 1 – Conditional Expression Changes 
The presence of a conditional expression change in faults 

that belong to Cluster 1 explain 94.7% of the similarity values 
for these items. Simple logic errors are expected to belong to 
this cluster. More complex algorithmic faults that require 
extensive logic changes may also be represented here. Four of 
the five faults we inspected were logic errors, while the fix for 
Bug 18787 was a more complex logic change.  

 Logic problems are a common cause for software faults 
and the source code changes are often small and contained.  
This results in faults that are easily characterized by these 
changes.  

2) Cluster 2 – Additional Functionality 
The similarity in Cluster 2 is explained by the addition of 

one or more new methods (95.2%). We expect faults in this 
cluster to include additions of new features and functionality. 
We investigated six faults in this cluster. 

Five of the faults met our expectations for this category. 
The sixth, Bug 15513, was fixed by overriding a method of the 
base class. This type of fault logically belongs to the group, so 
we add it as an additional consideration for this cluster. 

3) Cluster 3 – Update Method Call 
The faults in Cluster 3 are characterized by the update of a 

method call (95.4%). The faults in this cluster are expected to 
be interface faults that involve the incorrect use of methods. 
Five faults in this cluster were manually inspected.  

The most unexpected finding in this cluster was the impact 
of anonymous classes. Three of the five faults that we manually 
inspected in this cluster had methods updated where the 
argument was an anonymous class. The changes to the 
anonymous class were logic changes. An example is shown in 
Fig. 6 from Bug # 20421. Similar to the anonymous class that 

was encountered in cluster 0, the true nature of the change was 
hidden.  The addition of lines 77-81 check a precondition and 
return false if it is not met.  However, it occurs within the 
anonymous class that is passed to the accept method on line 68. 

4) Cluster 4 – Insert If and Return Statements 
Cluster 4 is the first cluster that is primarily explained by 

two features. The addition of a return statement explains 47.3% 
of the similarity and the addition of an if statement explains 
36.4% of the similarity. We expect simple faults in this cluster 
to be checking faults. More complex faults with multiple 
instances of if statements and/or multiple instances of return 
statements may represent more complex logic faults or 
algorithmic faults. Five faults were manually inspected in this 
cluster and all of them met expectations. Two of the five were 
checking faults. Two of the fixes were minor logic changes. 
Bug 14061 had extensive changes to the program logic. 

5) Cluster 5 – Insert If Statement and Parent Change 
The faults in Cluster 5 are characterized by a statement 

parent change (63.1%) and the insertion of one or more if 
statements (22.7%). Similar to Cluster 4, we expect logic faults 
that range from checking faults to more complex logic faults. 
We manually inspected five faults in this cluster. Bug 14025 
was the only fault in this cluster that did not meet our 
expectations. The change required logic changes, but included 
new functionality as well.  

6) Cluster 6 – Insert Method Call 
The similarity of faults in Cluster 6 is explained primarily 

through the insertion of method calls (78.5%). A small part of 
the similarity is explained due to the addition of methods 
(6.7%). We expect this cluster to contain faults due to missing 
functionality and misuse of methods. Seven faults from this 
cluster were manually inspected. 

Three of the faults addressed missing functionality (10823, 
11308, and 18067). Three of the faults were interface faults 
(17490, 17981, and 21654). The fix for Bug 16160 was 
unexpected in this cluster. It repaired a dependency problem. 
Additional analysis may be necessary to automatically classify 
issues of this type. 

7) Cluster 7 – Delete Method Call 
The faults in Cluster 7 are explained by the removal of 

method calls (56.6%) and partially explained by the insertion of 
new method calls (16.2%). We expect the faults in this cluster 
to include the removal of extraneous code and moving method 
calls to new locations. Since the changes imply restructuring of 

the code, functional defects and refactoring may also be 
present in these faults. Five faults from this cluster were 
manually inspected. Three of the five fell into the 
category of extraneous method calls or functionality 
(14800, 16051, and 16445). The other two fixes in this 
cluster involved extensive changes to current program 
flow, and included refactoring. 

8) Cluster 8 – Insert If, Variable Declaration, 
Method Calls and Assignments 

The faults in Cluster 8 are explained by the insertion 
of if statements (40.3%), variable declarations (19.5%), 
method calls (11.1%), and assignment statements 
(9.0%). Given the nature of these changes, the faults in Fig. 6. Additional condition check and exit within an anonymous class from Bug 

#20421 



this cluster are expected to be algorithmic or functional 
changes to behavior. Seven faults in this cluster were manually 
inspected. 

Five of the faults that were manually inspected fall into this 
broad category of changes. Bug 15506 was fixed by adding a 
busy indicator. The CVS commit for Bug 19270 included 
changes for another bug, which makes automated analysis 
challenging. The large number of faults that met our 
expectations in this cluster is encouraging, but further analysis 
is needed.   

9) Cluster 9 – Garbage Collector 
As mentioned previously, the last cluster acts as a “garbage 

collector” when the I1 criterion function is used. The 
descriptive features for this cluster were an update to an 
assignment (24.6%), addition of an assignment (12.7%), 
removal of a variable declaration (8.0%), update of a return 
statement (6.6%), and removal of a function (6.5%). The 
variation in change types and the scores for each feature 
support previous findings about the nature of the last cluster 
when I1 is used [23]. 

We expect this cluster to have varied faults that are either 
uncommon or simple faults that are obfuscated by 
implementation details. These may represent a set of faults for 
which automated classification is not possible or is not 
warranted due to their infrequent nature. A total of eight faults 
from this cluster were manually inspected. 

There was no discernible pattern to these changes. Some of 
the changes were large, while others were small and infrequent. 
It is important to note that the fix for Bug 16027 includes some 
changes that were hidden because they were part of a return 
statement.  

V. THREATS TO VALIDITY 
Wohlin et al. describe four areas where the validity of the 

results may be threatened [25], we discuss threats in each of 
these areas. 

Conclusion validity concerns the statistical significance of 
the result. CLUTO allows the clustering of data to be repeated 
a number of times to avoid incorrect results due to a local 
minimum or maximum. We used a value of ten for the number 
of iterations, commonly used in clustering experiments with 
this tool [22], [23]. We undertook statistical analysis to test our 
hypotheses, and checked the assumptions of the tests that were 
used.  

Internal validity is concerned with our ability to correctly 
measure the influence of the independent variables on the 
dependent variables and the elimination of possible 
confounding variables. We use publicly available data to 
construct our dataset. In addition, we are in the process of 
repeating the experiment on multiple versions of the Eclipse 
software. Initial results indicate that our clustering results are 
consistent across versions.  

Construct validity refers to how well the independent and 
dependent variables in the study measure what is intended. It is 
difficult to measure the correctness of clustering when a correct 
answer is unknown. Purity and entropy measures require a 

classified dataset, and the manual classification of faults after 
the fact is time consuming and error prone.  

External validity refers to the ability to generalize the 
results of the study. This paper presents early work that 
requires additional validation before generalization is possible. 
To achieve results that can be generalized we will extend the 
study with multiple versions of Eclipse and other software 
systems. The study also depends on tools that are currently 
available only for Java source code. We cannot claim that our 
results can be generalized outside of this particular dataset. 

Our manual inspections of faults within each cluster are 
subjective. In order to obtain statistically valid results, 
independent reviewers should be used to classify the faults 
manually and inter-rater agreement should be measured. The 
number of faults inspected should also be increased to a 
statistically significant sample. Despite these limitations, the 
manual inspection in this study did find specific issues that can 
be used to guide improvement to the change taxonomy.  

VI. RELATED WORK 
DeMillo and Mathur present a syntactical classification of 

software faults [8]. DeMillo and Mathur define the notion of a 
syntactic transform that captures the difference in two versions 
of the software’s abstract syntax tree. The classification is 
automatable, but results in a large number of software fault 
types. Our research was motivated by this approach, and the 
idea that “syntax is the carrier of semantics” [8]. DeMillo and 
Mathur validate their work by classifying 291 software faults 
from TeX. Faults are classified in a hierarchy to handle cases 
where there are multiple changes involved in a single fix. The 
change types used by DeMillo and Mathur were designed for 
Pascal, and include changes more granular than statement level 
changes (e.g. wrong operator).   

Pan, Kim, and Whitehead describe 27 automatically 
extractable bug fix patterns for Java source code. A bug fix 
pattern describes a syntactical pattern that occurs as one part of 
a software fault fix, such as changing the parameters of a 
method call [14].  Pan et al. consider a change to the source 
code as a collection of “hunks,” and refer to the hunk in the 
faulty and fixed version of the code as a “hunk pair.” The bug 
fix patterns cover 45.7%-63.3% of the total fault fix hunk pairs 
in seven open source java projects [14]. Pan et al. found the 
frequency of these patterns to be surprisingly consistent, 
concluding that developers have difficulty with specific code 
situations at a highly consistent rate. Our research has 
similarities, but differs in two major ways.  First, our work does 
not look for pre-defined patterns of changes.  The extended 
change taxonomy can be used as a basis to do this, but 
additional applications are possible.  Secondly, we look at a 
fault fix as a whole, rather than individual “hunk pairs” in the 
fault fix.  This is an important distinction when the fault that is 
being examined is a large, complex change.  

Thung et al. categorize defects into three super-categories 
of ODC defect types, control and data flow, structural, and 
non-functional [26]. Text from the bug reports is pre-processed 
to extract features based on the bug report. The code is pre-
processed to extract counts for additions and deletions of nodes 



in the abstract syntax tree. Thung et al. empirically validated 
their approach on 500 defects from three software systems, 
with a 77.8% average accuracy using a SVM multiclass 
classification algorithm [26].  Our method currently focuses on 
source code changes alone. Our study builds on the change 
types that are extracted from the Evolizer toolset, and thus uses 
a more sophisticated algorithm for the comparison of abstract 
syntax trees [12], [20]. 

VII. CONCLUSIONS 
In this study, we extend the change taxonomy developed by 

Fluri and Gall [13], as implemented in ChangeDistiller [12], 
[20], and evaluate its use for analyzing software fault fixes. 
First, we extend the change taxonomy by expanding statement 
delete, statement insert, statement update, and statement 
ordering change change types to include the type of statement 
that was changed.  We record the occurrence of these change 
types in two versions of Eclipse. We find that the extended 
change types occur more frequently than the original change 
types, and that their occurrence in the two versions is 
consistent. 

In order to further validate the extended change types, and 
their patterns of occurrence, the CLUTO clustering toolkit is 
used to cluster the fault fixes. Using the repeated bisection 
clustering method and the cosine similarity, the I1 criterion 
function performs better than the I2 criterion function with 
respect to the average internal similarity of the clusters in the 
resulting solution. The ability of I1 to create tight clusters and 
one cluster that acts as a “garbage collector” in a noisy data set 
aids the investigation [23]. 

The results of clustering where k=10 are analyzed. The 
similarity of the cluster is explained by one to four features that 
are shared by the faults in the cluster. These descriptive 
features are used to automatically label the cluster. The clusters 
for Eclipse 2.0 and 3.0 and their sizes were compared. We 
found that the occurrence and size of the clusters were 
correlated, indicating that the clustering of these change types 
is consistent in these two versions of the software.  

A subjective analysis of a subset of faults in each cluster 
provides guidance on the types of faults characterized by 
different source code change types.  Many fault fixes are in 
agreement with our expectations based on the syntactical 
changes that were made to the fault. For example, faults fixed 
with changes to condition expressions that are inspected in this 
study are in line with expectations.  

Several of the faults that were inspected exposed limitations 
in the taxonomy. ChangeDistiller stops the comparison of the 
abstract syntax trees at the statement level due to its intent in 
analyzing change couplings.  As a result, update changes to 
variable declarations, assignments, or return statements do not 
provide the granularity necessary for fault analysis. We saw a 
surprising number of problems with anonymous classes as 
method parameters, and within variable declarations, that also 
require more granular information about the change. These 
findings indicate that we must extend the comparison beyond 
differences in statements, to differences in arguments and 
expressions. Based on our results, we make the case that is 

necessary to have a taxonomy that can indicate changes to 
operators and literals in addition to structure.  

Faults that fix dependency problems provide additional 
challenges. Adding change types for the addition and removal 
of import statements may aid in this effort, but more 
sophisticated dependency analysis for build and run-time 
dependencies may be necessary. 

We encountered a number of common software repository 
mining problems during our manual inspection. Code 
refactoring that is included in a commit for a bug fix can make 
analysis difficult. A simple change, such as renaming a variable 
for readability, should be handled at the semantic level of 
analysis. More complex refactoring changes will still make 
automated analysis difficult. Developers sometimes include 
multiple bug fixes in a single commit, as evidenced by Bug 
#19270. Bug #18468 was mislabeled as Bug #18486, which 
can be problematic when bug database information is cross-
referenced with the syntactical changes. 

We conclude that the current taxonomy may be helpful for 
analyzing a subset of fault types, but that the taxonomy must be 
further extended for syntactical fault analysis.  Improving the 
change taxonomy and broadening the validation of the results 
are the focus of our future work. 

VIII. FUTURE WORK 
Our first step to extend this study will be to expand the 

change taxonomy to provide more granular information about 
source code changes that occur within a statement. Update 
Statement changes, even in their expanded form, can vary 
widely for variable declarations, assignments, and return 
statements. We must also account for anonymous classes when 
used within variable declarations and as method parameters.  

In future studies we will expand this work to include 
additional datasets from subsequent versions of the Eclipse 
software. In particular, we would like to study the results for 
Eclipse version 3.3 (Europa) through 3.6 (Helios). This will 
provide data on four versions of Eclipse over a four year 
period.  We also plan to compare the change characteristics of 
fault fixes with those of other changes, such as new features 
and refactoring changes.  

Automated or semi-automated fault classification opens the 
door to large scale studies on software faults in open source 
systems that are currently cost prohibitive. In future work we 
hope to apply our fault classification technique to study fault 
links. Hayes et al. define a fault link as “a relationship between 
the type of module being developed or changed and the fault 
type” [17].  

In a case study with the Apache web server and the Mozilla 
web browser, Hayes et al. found evidence that suggests there is 
a relationship between the module type and the fault type [17]. 
In a second study, Hayes et al. empirically validated that the 
application of fault link data to code inspections can improve 
the number of faults found and improve the detection of faults 
that are difficult to locate [18]. Fault links have potential 
applications in many verification and validation (V&V) 
techniques. The application of automated fault classification 



and automated module classification will provide access to 
significantly more data for the exploration of fault links.  
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