
Toward Extended Change Types for Analyzing
Software Faults

Billy Kidwell
Department of Computer Science

University of Kentucky
Lexington, KY

bill.kidwell@uky.edu

Jane Huffman Hayes
Department of Computer Science

University of Kentucky
Lexington, KY

hayes@cs.uky.edu

Allen P. Nikora
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA

allen.p.nikora@jpl.nasa.gov

Abstract—This research extends an existing source code change
taxonomy that was designed to analyze change coupling. The
extension expands change types related to statements in order to
achieve more granular data about the type of statement that is
changed. The extended taxonomy is evaluated to determine if it
can be applied to software fault analysis. We found that the
extended change types occur consistently and with high
frequency in fault fixes for Eclipse 2.0 and 3.0. Faults were then
clustered according to the source code changes and analyzed. We
found that the types and sizes of clusters are highly correlated,
indicating some consistency in the patterns of the fault fixes.
Finally, we performed an initial investigation to determine
whether faults in the same cluster have similar characteristics.
Our results indicate that many of the change types can be used to
characterize the type of fault that has been fixed. However, some
of the change types obfuscate the true nature of the fix. Ideas for
improving the taxonomy based on these findings are provided.

Index Terms—Fault classification, change taxonomy,
clustering, source code analysis.

I. INTRODUCTION
Software fault classification schemes have been used to

guide process improvement [1]–[3], prevent defects [4],
improve software interface design [5], [6], improve testing [7]–
[9] and analyze security breaches [10]. Despite the benefits of
using a software fault classification scheme, it is not yet
common practice in industry. Practitioners find that some faults
are difficult to classify, and that training and discipline are
necessary to get accurate results [11]. Tool support could
improve the accuracy and efficiency of the software fault
classification process.

 This research investigates the extension and application of
fine-grained source code changes to the analysis of software
faults. Fluri et al. introduced ChangeDistiller, a tool that can
identify the fine-grained source code changes from two
versions of source code [12]. The algorithm and change
taxonomy implemented in ChangeDistiller are designed to
analyze change couplings [12], [13]. A version of
ChangeDistiller is available under an open source license1. The
change taxonomy consists of more than forty change types.
Four of these change types identify the insert, update, delete, or
re-ordering of a statement. In order to extend the taxonomy, we

1 https://bitbucket.org/sealuzh/tools-changedistiller/

expand these four change types by appending the type of
statement that was changed.

The first contribution of this research is an extension to the
change taxonomy developed by Fluri and Gall [13] that allows
the taxonomy to be applied to the analysis of software faults.
We demonstrate that the new change types occur often in fault
fixes for two versions of the Eclipse software project. We also
find that the frequency of occurrence is correlated, indicating a
consistency in the types of fixes that are applied to the two
versions of the software.

A second contribution of the study is a technique to cluster
faults according to the syntactic similarity of the fix in order to
validate that the taxonomy. A vector of the extended change
types and their frequency is used as input. Cosine similarity is
used as the internal similarity measure. The resulting clusters
occur consistently in two versions of Eclipse and provide
groups of fault fixes with similar syntax. The clustering method
chosen also reduces noise in the data by creating a single, low
similarity cluster with data that does not match other clusters.
This allows a random selection of faults from each cluster for
manual analysis.

A third contribution of this study is the identification of
limitations in the extended change taxonomy. We find that
some clusters contain faults that are well characterized by the
dominant change types for that cluster. For example, the faults
that we randomly sampled in the condition expression change
cluster were logic faults. On the other hand, some clusters
contain faults where the change type obfuscates the primary
characteristics of the fault. As an example, the update variable
declaration change type does not differentiate between an
update to a declaration where a variable is initialized with a
method call and an update to a declaration where the variable is
initialized with a constant. We report our findings and suggest
future work to improve the change taxonomy in the context of
software fault analysis.

A minor contribution of this work is additional data on the
nature of software fault fixes. Pan et al. introduced bug fix
patterns that cover 45.7%-63.3% of the total fault fix hunk
pairs in seven open source java projects [14]. Their study found
the frequency of these patterns to be surprisingly consistent,
concluding that developers have difficulty with specific code
situations at a highly consistent rate. Hamill and Goševa-
Popstojanova reported that requirements faults and coding
faults represent 33% of the total faults each [15]. Furthermore,

they grouped projects by the number of releases and compared
their results with three other studies. They conclude that coding
faults are significant, that interactions between components
cause problems, and that the remaining defect types are not
major causes of problems and may be domain specific. Our
investigation uncovered and validated a strong consistency in
the syntax used to correct software faults in two major versions
of Eclipse. The occurrence of particular syntactical change
types and the patterns of syntax changes that were clustered
both exhibit this consistency.

IEEE defines a software fault as an “incorrect step, process
or data definition in a computer program” [16]. The term defect
is used synonymously with fault by some researchers. A fault
leads to a failure when the software does not perform to
specifications. The term bug is ambiguous, and may refer to a
fault or the resulting failure. We avoid the use of the term bug
as much as possible, but it may be used to refer to the
documentation of a fault in fault tracking databases such as
Bugzilla2.

The paper is organized as follows. Section 2 presents our
motivation to improve software fault classification. Section 3
explains the research approach for this study. In Section 4 we
present our validation of the extended change taxonomy.
Threats to validity are presented in Section 5. Related work is
discussed in Section 6. Future work is discussed in Section 7.

II. MOTIVATION
Despite multiple advantages that have been documented for

software fault classification, the classification of faults is not a
mainstream practice. Fault classification data could also be
useful in software engineering research. For example, which
types of faults are most easily predicted by fault prediction
models? How does the prediction of specific fault types vary
with different features? What is the relationship between the
fault type, and the type of component where a fault may occur
(aka Fault Link[17], [18])? Research questions such as these
are all faced with a significant barrier to entry due to the lack of
data sets with classified fault information.

Our proposed solution to this problem is a decision support
system (DSS) that can aid a developer or researcher with the
classification of software faults. This section describes our
vision for the DSS and relates the current research to this effort.

The fault classification process begins when the developer
commits a fix for a software fault. The abstract syntax tree for
the source code before and after the fix is instantiated and
compared. This comparison results in a collection of fine-
grained source code changes that can be used as input to the
system, as depicted in Fig 1. The extended change types in this
research form a basis for the input to the decision support
system.

The user is presented with a view to show the differences in
the source code alongside suggestions for the most appropriate
fault type. The fault type suggestions are provided by a
machine learning algorithm that is trained from historical data.

2 http://www.bugzilla.org/

The resulting selection is stored and may be used as additional
training data.

Fig. 1. A Decision Support System for Fault Classification

III. APPROACH
The approach is divided into data collection and clustering.

A. Data Collection
This study builds on the Eclipse fault data that was used by

Krishnan et al. to evaluate change predictors in a software
product line [19]. Eclipse 2.0 and Eclipse 3.0 were selected for
this study. Each fault is processed according to a simple
workflow. File revisions before and after each fault fix are
retrieved from the CVS source code repository and stored
locally.

The fine-grained source code changes are extracted for each
pair of files using the ChangeDistiller tool [20]. Fluri et al.
describe the change distilling process, where the abstract
syntax tree of each revision of the source code are compared
and source code changes are extracted [12]. These source code
changes are stored in a database with all of the contextual
information that is provided by ChangeDistiller. Contextual
information includes the name and type of the source code
entity that was changed with its location in the file, the parent
entity of the changed entity, and the parent entity of before the
source code change.

The contextual information collected by ChangeDistiller
allows the extension of the statement delete, statement insert,
statement update, and statement ordering change change types.
We use the changed entity information available from the
ChangeDistiller API to identify the type of statement that was
altered, such as an if statement or method invocation. All of the
information for each change is recorded in an SQL database
and the extension is performed through the use of an SQL
script. A database trigger is used to append the changed entity’s
type to the change type. This occurs for the statement insert,
statement update, statement delete, and statement ordering
change types. For example, a record with a change type of
statement insert and a changed entity of method invocation will
result in an extended change type of statement insert method
invocation. We translate this value to insert method call for
readability. Once the database is populated with all of the
source code changes, a query is used to collect the type and

count of source code changes that are recorded for each fault in
the dataset.

B. Clustering
The input to the clustering process is a vector. The features

of the vector are the extended change types. One hundred and
one extended change types were present in the Eclipse 2.0
dataset and one hundred and nine change types were present
for Eclipse 3.0. Space limitations do not allow the enumeration
of all features, but the most significant features are shown in
the legend of Fig 4. The extended change types are shown in
bold.

The CLUTO clustering toolkit is used to perform clustering
of the data [21]. CLUTO was selected based on its inclusion of
cosine similarity as a distance measure and the visualization
features that aid in the analysis of the clusters. CLUTO creates
a hierarchical clustering solution when the repeated bisection
approach is used [22]. The hierarchical solution provides views
of the data at different levels of granularity, and in our case
allows us to compare hierarchies in data from multiple datasets.

All documents are initially partitioned into two clusters.
One of the clusters is selected and bisected. This process is
repeated k-1 times to arrive at k clusters. CLUTO provides
seven different criterion functions that can be used to guide the
clustering process. A simple, greedy scheme is used to
optimize the selected criterion function [23]. During multiple
iterations of refinement, each instance in a cluster is visited in
random order and moved to the cluster that improves the
criterion function’s value. This iterative refinement is repeated
until no instances are moved. In order to avoid the selection of
a local maximum or local minimum, the entire process is
repeated multiple times and the best solution is selected. The
default value of ten iterations was used in this study.

CLUTO offers multiple criterion functions that can be used
in clustering. Our purpose in clustering is to group faults with
similar syntactic changes. The I1 and I2 criterion functions
maximize internal similarity, so we limited our evaluation to
these criterion functions. I1 maximizes the sum of the average
pairwise similarities between the instances in the cluster. I2
maximizes the similarity between each instance and the
centroid of the cluster, similar to the k-means algorithm [21].

CLUTO provides metrics to aid in cluster analysis. For
each cluster, the internal similarity (iSim) and external
similarity (eSim) are reported, along with their standard
deviations (iSDev and eSDev). The internal similarity is the
average similarity between all objects of the cluster. An
internal similarity near one represents a “tight” cluster. We
focus our evaluation of clusters on the internal similarity since
we are trying to group software fixes with similar syntax. The
external similarity is the average similarity between the objects
of each cluster with the rest of the objects. An external
similarity near zero represents a cluster that is well-separated
from other clusters in the data set. We report the external
similarity but do not use it for evaluation.

CLUTO reports a number of features that account for the
internal similarity of a particular cluster. These are referred to
as descriptive features [21]. A percentage is provided with each
feature. This allows us to make statements such as “Condition

expression changes account for 94.7% of the similarity for
instances in cluster 1.” The descriptive features are used in this
study to characterize and label each of the clusters and make a
conjecture about the types of faults that belong to the group.
Labeling of the clusters is entirely based on the statistical
prominence of the features in the cluster, and not based on
subjective evaluation of the results.

IV. VALIDATION
We perform four main tasks during our analysis of the

extended change types. For the first task, we investigate the
most common change types in fault fixes for Eclipse 2.0 and
3.0. We then compare the percentage occurrence of the top 12
change types in both versions of the software to determine if
the occurrence is consistent. In the second task we evaluate the
I1 and I2 criterion functions to determine the most appropriate
criterion function for clustering the fault data. Next, we
compare the clusters of Eclipse 2.0 and Eclipse 3.0 to
determine whether there is consistency in the clustering of
faults. Finally, we perform a manual inspection of a subset of
the faults to investigate the usefulness of the clusters for
analyzing faults. Although our manual inspection includes too
few faults to make any strong conclusions, we identify several
areas of improvement based on the evaluation.

A. Frequency of Change Types in Fault Fixes
In this section we evaluate the frequency of extended

change types in software fault fixes as compared to the original
change taxonomy. The top twelve change types that are
extracted from fault fixes in Eclipse 2.0 and 3.0 are the same,
and are presented in Table I with frequency of occurrence.

TABLE I. TOP TWELVE CHANGE TYPES IN FAULT FIXES

Change Type Eclipse 2.0 Eclipse 3.0
 Commits Percent Commits Percent
Insert If * 1512 52.39% 3415 52.21%
Insert Method Call * 1391 48.20% 3039 46.46%
Insert Var Decl * 1145 39.67% 2637 40.31%
Statement Parent Chg 1098 38.05% 2555 39.06%
Add Functionality 979 33.92% 2205 33.71%
Update Method Call * 958 33.19% 2095 32.03%
Insert Assignment * 937 32.47% 2238 34.21%
Delete If * 934 32.36% 2239 34.23%
Delete Method Call * 861 29.83% 1883 28.79%
Insert Return * 777 26.92% 1750 26.75%
Update Var Decl * 734 25.43% 1850 28.28%
Cond Expr Change 731 25.33% 1853 28.33%

The first column indicates the change type. Change types

that were introduced by our extension to the taxonomy are
denoted by an asterisk (*). The second and fourth columns
provide the number of commits that are associated with a fault
fix that contained at least one instance of the change type for
each version of the software. The third and fifth columns
provide a percentage of the total number of commits that
include the change type.

The total number of extended change types in this list
provides evidence that the extended change types provide
additional granularity that is useful in the analysis of software
fault fixes. The change types occur with surprising consistency

between the two versions. This led us to question whether the
frequency between the two versions is consistent. The
following hypotheses are used for investigation.

H0: There is no significant correlation in the frequency
of extended change types in Eclipse 2.0 and
Eclipse 3.0 (α=0.05).

HA: The frequency of extended change types in
Eclipse 2.0 and Eclipse 3.0 are correlated
(α=0.05).

The data is not normally distributed, so the non-parametric
Wilcoxon signed rank test is performed to test the hypothesis.
The test was performed against the number of commits for
each extended change type in the dataset. The test indicates
that there is no significant difference in the frequency of the
change types, with a p-value of 0.0005. We reject H0 in favor
of the alternative and conclude that the occurrence of change
types is consistent in these two versions of the software.

B. Evaluation of Criterion Functions
In order to proceed with the clustering and inspection of the

faults, we must choose the most appropriate criterion function.
We limit our selection to the I1 and I2 criterion functions, since
these functions maximize the internal similarity of the clusters.
Clustering is performed for fault data for Eclipse 2.0 and
Eclipse 3.0. We repeat the clustering for all values of k from 2
to 20. The number of fault types in a fault taxonomy should be
manageable and not too large [24]. Based on this
recommendation, we expect there to be seven to ten fault types.
We choose a broad range of numbers to be inclusive. We use
the following hypotheses for investigation.

H0: There is no difference in the mean internal

similarity of clusters when using the I1 and I2
criterion functions (α=0.05).

HA: The mean internal similarity of clusters when
using the I1 criterion function is greater than the
mean internal similarity of clusters when using the
I2 criterion function (α=0.05).

The mean internal similarity for each of these methods is

presented in Table II. The number of clusters, k, is shown in
the first column. The remaining columns report the internal
similarity for each method, for each version. A graph of these
values for the Eclipse 2.0 dataset is presented in Fig. 2. A
similar graph for Eclipse 3.0 is displayed in Fig. 3.

We perform a one-tail paired samples Wilcoxon signed
rank test on the similarity data for I1 and I2 to evaluate the
hypothesis. A paired t-test was considered, but the data does
not pass a test for normality, and thus the non-parametric test is
used. We perform the test independently for both versions of
Eclipse. For Eclipse 2.0, the p-value = 3.815e-06 and for
Eclipse 3.0, the p-value = 3.624e-05. In both cases we are able
to reject the null hypothesis in favor of the alternate hypothesis.

Zhao and Karypis provide an analysis of document
clustering solutions using the I1 and I2 criterion functions in

their comparison of criterion functions [23]. In general, all
criterion functions have different sensitivities based on the
tightness of the clusters and the degree of balance in the
resulting solution. Zhao and Karypis analyze the I1 and I2
functions to explain how the I1 criterion function can lead to
several pure, tight clusters and a single large, poor quality
cluster. This poor quality cluster is referred to as a “garbage
collector” and results from the function’s tendency to exclude
peripheral documents from the pure clusters.

TABLE II. MEAN INTERNAL SIMILARITY

 Eclipse 2.0 Eclipse 3.0
k I1 I2 I1 I2
2 0.292 0.282 0.297 0.289
3 0.329 0.317 0.333 0.322
4 0.404 0.401 0.412 0.415
5 0.475 0.429 0.439 0.443
6 0.497 0.449 0.526 0.468
7 0.517 0.462 0.546 0.494
8 0.535 0.487 0.551 0.510
9 0.561 0.495 0.566 0.528
10 0.567 0.499 0.571 0.531
11 0.577 0.506 0.584 0.539
12 0.580 0.503 0.591 0.571
13 0.584 0.511 0.601 0.569
14 0.593 0.514 0.612 0.574
15 0.597 0.521 0.614 0.576
16 0.602 0.543 0.617 0.580
17 0.606 0.549 0.601 0.585
18 0.607 0.555 0.604 0.587
19 0.621 0.561 0.615 0.599
20 0.624 0.567 0.622 0.630

Fig. 2. Mean Internal Similarity for Eclipse 2.0

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In
te

rn
al

 Si
m

ila
rit

y

Number of Clusters (k)

Eclipse 2.0

I1

I2

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

In
te

rn
al

 Si
m

ila
rit

y

Number of Clusters (k)

Eclipse 3.0

I1

I2

Fig. 3. Mean Internal Similarity for Eclipse 3.0

Zhao and Karypis provide an analysis of document
clustering solutions using the I1 and I2 criterion functions in
their comparison of criterion functions [23]. In general, all
criterion functions have different sensitivities based on the
tightness of the clusters and the degree of balance in the
resulting solution. Zhao and Karypis analyze the I1 and I2
functions to explain how the I1 criterion function can lead to
several pure, tight clusters and a single large, poor quality
cluster. This poor quality cluster is referred to as a “garbage
collector” and results from the function’s tendency to exclude
peripheral documents from the pure clusters.

Zhao and Karypis conclude that this property of the I1
criterion function may be useful in noisy data sets [23]. This
helps explain the superiority of the I1 criterion function in our
experiment, and suggests that more analysis of the instances in
the “garbage collector” may help refine analysis for less-
frequent faults.

C. Consistency of Clusters for Eclipse 2.0 and 3.0
In this section we analyze the consistency of the clustered

fault fixes for Eclipse 2.0 and Eclipse 3.0 at k=10. We choose
this value of k due to similarities in the descriptive features
across the two versions of Eclipse. The groups appear to
stabilize at this value of k. Ten is also on the high end of the
number of fault classifications that are recommended by best
practices [24]. We label each cluster based on the descriptive
features reported by CLUTO. Since the top five descriptive
features of each cluster are reported, we use a threshold value
of 10% for determining whether a feature is significant.

The cluster features, sizes, and similarities are reported in
Table III. The first row reports on the clusters that are
described by the update of a variable declaration. In Eclipse
2.0, this cluster included 94 faults, while in Eclipse 3.0 the
cluster includes 261. The last row of the table contains totals
for the number of faults in each data set.

TABLE III. COMPARISON OF CLUSTERED FAULTS

Eclipse 2.0 Eclipse 3.0

Cluster
(Descriptive Features) Size iSim Size iSim
Upd Var Decl 94 0.789 261 0.724
Cond Expr Chg 139 0.708 244 0.834
Add Func 132 0.678 441 0.599
Upd Method Call 266 0.663 494 0.654
Ins If + Ins Return 164 0.58 0 -
Ins If + Stmt Parent Chg 446 0.57 908 0.584
Ins Meth Call 434 0.566 756 0.582
Del Meth Call
+ Ins Meth Call 279 0.525 669 0.513
Ins If + Ins Meth Call
+ Ins Var Decl 554 0.504 1049 0.515
Ins Assign
+ Upd Assign 376 0.084 706 0.128
Ins Assign + Ins If 0 - 567 0.579

Total 2884

6095
Notice that Eclipse 2.0 has a cluster described by the

insertion of if and return statements, while Eclipse 3.0 has a
cluster that is described by the insertion of assignment and if
statements. In order to compare the clustering solutions, we

treat these as empty clusters in the versions where they do not
occur. We use the following hypotheses for investigation.

H0: There is no significant correlation in the clustering
solutions of Eclipse 2.0 and Eclipse 3.0 at k=10
(α=0.05).

HA: The clustering solutions of Eclipse 2.0 and
Eclipse 3.0 at k=10 are correlated (α=0.05).

To test the hypothesis, Pearson’s correlation coefficient is

calculated. A Shapiro-Wilk test for normality was performed
to verify that the data is normally distributed. The value of r
for the data is 0.778, with a p-value = 0.004, allowing us to
reject the null hypothesis and conclude that the cluster types
and sizes are correlated.

This correlation in the patterns of the faults is consistent
with the work completed by Pan et al. in their analysis of bug
fix patterns [14]. Our hope is that the syntax of the fix can be
used to determine a fault type. Fault taxonomies are
sometimes utilized to measure where faults are injected for
process improvement. Chillerage et al. demonstrated this use
with ODC [1]. If the syntax of the fix is an indicator of the
fault type, this consistency could also support the findings of
Hamill and Goševa-Popstojanova [15]. They found
consistency in where faults were introduced across multiple
studies, and concluded that coding faults were a significant
source of faults.

D. Manual Inspection of Faults in Each Cluster
In this section we present clustering results on Eclipse 2.0

fault fixes using the I1 criterion function and setting k=10.
Only Eclipse 2.0 is considered in this section. The Eclipse 2.0
dataset consists of 101 fine-grained source code change types
after expanding statement insert, update, delete, and ordering
change types and eliminating changes to comments and source
code documentation. There are 2884 faults in the dataset with
Java source code changes. Faults with zero Java source code
changes, e.g., those requiring only changes to properties or xml
configuration files, are not included in the analysis. CLUTO
reports a number of metrics for the clusters. These metrics are
presented in Table IV.

TABLE IV. CLUSTER SUMMARY

Cluster Id Size iSim iSDev eSim eSDev
0 94 0.789 0.124 0.077 0.052
1 139 0.708 0.134 0.112 0.073
2 132 0.678 0.125 0.129 0.058
3 266 0.663 0.136 0.118 0.069
4 164 0.58 0.084 0.212 0.073
5 446 0.57 0.093 0.203 0.065
6 434 0.566 0.091 0.208 0.066
7 279 0.525 0.09 0.207 0.084
8 554 0.504 0.082 0.246 0.059
9 376 0.084 0.057 0.083 0.081

The CLUTO manual provides a full description of these
metrics [21]. A summary is presented here. The Cluster Id is a
zero-based integer assigned to each cluster. The Size is the
number of faults that were assigned to the cluster. The column
labeled iSim is the mean internal similarity of the faults in the

cluster. The column labeled iSDev is the standard deviation of
the mean internal similarities. Similarly, the eSim column is the
mean similarity of the faults in the cluster with the faults that
are not in the cluster, or the external similarity. The eSDev
column is the standard deviation of the mean external similarity
for the faults in the cluster. The clusters are ranked by
subtracting the external similarity from the internal similarity
and arranging them in decreasing order. This positions tight,
distinct clusters at the top of the list.

CLUTO also reports descriptive and discriminating features
for each cluster. Descriptive features are reported with the
feature name and a percentage score. The percentage indicates
the amount of similarity in this cluster that can be attributed to
the descriptive feature. Likewise, discriminating features report
a percentage that describes the amount of the dissimilarity with
other clusters that can be explained by the discriminating
feature [21].

The CLUTO toolset provides tools to visualize clustering
results [21]. A modified version of the cluster plot visualization
for the results that we manually analyzed is presented in Fig. 4.
The columns in the visualization are the clusters, with the size
of each cluster in parentheses. The tree structure aids in
understanding the relationships between clusters. For example,
cluster 6 and 7 are very similar clusters, and contain similar
source code changes. The rows of the visualization provide a
subset of the 101 source code changes that were used as
features during the clustering process. The darkness of the cells

is based on the intensity of the feature within each cluster. For
example, in the first column we see that cluster 5 is described
by the statement parent change and insert if statement change
types. The label for descriptive features is repeated to the left of
each occurrence. As an example, Cluster 1, on the far right of
the illustration, is described by conditional expression changes
(COND EXPR CHG).

For each cluster we present internal clustering metrics,
features that explain the clusters, and then conduct a manual
inspection of five to eight faults. We randomly selected the
faults that were manually inspected from each of the clusters.
The fault reports for these faults are available on the Eclipse
foundation Bugzilla web site.3 A description of our manual
assessment of each individual fault is available online for
interested readers (http://selab.netlab.uky.edu/Kidwell-Hayes-
Eclipse_2-0-Fault-Inspection.pdf).

1) Cluster 0 – Update Variable Declaration
Cluster 0 is the tightest and smallest cluster in the selected

solution. The update variable declaration change type explains
over 98% of the similarity of the faults in the cluster. We
expect faults in this cluster to represent faults where a variable
is either uninitialized or incorrectly initialized.

Two of the five faults in this category fell in this expected
category (10483 and 16828). In Bug 11110, a condition
expression change is edited to check for null references. A
portion of the change is provided in Fig. 5. The change requires
the intermediate variable window to be added on the new line

3 https://bugs.eclipse.org/bugs/

Fig. 4. Visualization of Clusters for Eclipse 2.0 where k=10 using I1 criterion function.

Fig. 5. Fault fix to check for Null Pointer Exception in Bug 11110

https://bugs.eclipse.org/bugs/

167. The window variable is used in the new condition on the
new line for 168. This change is obfuscated because it occurs in
a variable declaration for an anonymous class, an instance of
Runnable that is declared on line 165.

The fix for Bug 18923 includes variable name changes that
cause this fault to belong to this cluster, but do not characterize
the fault. Bug 23824 appears to be an interface fault due to a
cast or incorrect argument. In this case the call occurs in a
variable declaration and is not detected.

The unexpected faults in this cluster indicate that updates to
variable declarations can hide important syntactical details that
are necessary for fault analysis.

2) Cluster 1 – Conditional Expression Changes
The presence of a conditional expression change in faults

that belong to Cluster 1 explain 94.7% of the similarity values
for these items. Simple logic errors are expected to belong to
this cluster. More complex algorithmic faults that require
extensive logic changes may also be represented here. Four of
the five faults we inspected were logic errors, while the fix for
Bug 18787 was a more complex logic change.

 Logic problems are a common cause for software faults
and the source code changes are often small and contained.
This results in faults that are easily characterized by these
changes.

2) Cluster 2 – Additional Functionality
The similarity in Cluster 2 is explained by the addition of

one or more new methods (95.2%). We expect faults in this
cluster to include additions of new features and functionality.
We investigated six faults in this cluster.

Five of the faults met our expectations for this category.
The sixth, Bug 15513, was fixed by overriding a method of the
base class. This type of fault logically belongs to the group, so
we add it as an additional consideration for this cluster.

3) Cluster 3 – Update Method Call
The faults in Cluster 3 are characterized by the update of a

method call (95.4%). The faults in this cluster are expected to
be interface faults that involve the incorrect use of methods.
Five faults in this cluster were manually inspected.

The most unexpected finding in this cluster was the impact
of anonymous classes. Three of the five faults that we manually
inspected in this cluster had methods updated where the
argument was an anonymous class. The changes to the
anonymous class were logic changes. An example is shown in
Fig. 6 from Bug # 20421. Similar to the anonymous class that

was encountered in cluster 0, the true nature of the change was
hidden. The addition of lines 77-81 check a precondition and
return false if it is not met. However, it occurs within the
anonymous class that is passed to the accept method on line 68.

4) Cluster 4 – Insert If and Return Statements
Cluster 4 is the first cluster that is primarily explained by

two features. The addition of a return statement explains 47.3%
of the similarity and the addition of an if statement explains
36.4% of the similarity. We expect simple faults in this cluster
to be checking faults. More complex faults with multiple
instances of if statements and/or multiple instances of return
statements may represent more complex logic faults or
algorithmic faults. Five faults were manually inspected in this
cluster and all of them met expectations. Two of the five were
checking faults. Two of the fixes were minor logic changes.
Bug 14061 had extensive changes to the program logic.

5) Cluster 5 – Insert If Statement and Parent Change
The faults in Cluster 5 are characterized by a statement

parent change (63.1%) and the insertion of one or more if
statements (22.7%). Similar to Cluster 4, we expect logic faults
that range from checking faults to more complex logic faults.
We manually inspected five faults in this cluster. Bug 14025
was the only fault in this cluster that did not meet our
expectations. The change required logic changes, but included
new functionality as well.

6) Cluster 6 – Insert Method Call
The similarity of faults in Cluster 6 is explained primarily

through the insertion of method calls (78.5%). A small part of
the similarity is explained due to the addition of methods
(6.7%). We expect this cluster to contain faults due to missing
functionality and misuse of methods. Seven faults from this
cluster were manually inspected.

Three of the faults addressed missing functionality (10823,
11308, and 18067). Three of the faults were interface faults
(17490, 17981, and 21654). The fix for Bug 16160 was
unexpected in this cluster. It repaired a dependency problem.
Additional analysis may be necessary to automatically classify
issues of this type.

7) Cluster 7 – Delete Method Call
The faults in Cluster 7 are explained by the removal of

method calls (56.6%) and partially explained by the insertion of
new method calls (16.2%). We expect the faults in this cluster
to include the removal of extraneous code and moving method
calls to new locations. Since the changes imply restructuring of

the code, functional defects and refactoring may also be
present in these faults. Five faults from this cluster were
manually inspected. Three of the five fell into the
category of extraneous method calls or functionality
(14800, 16051, and 16445). The other two fixes in this
cluster involved extensive changes to current program
flow, and included refactoring.

8) Cluster 8 – Insert If, Variable Declaration,
Method Calls and Assignments

The faults in Cluster 8 are explained by the insertion
of if statements (40.3%), variable declarations (19.5%),
method calls (11.1%), and assignment statements
(9.0%). Given the nature of these changes, the faults in Fig. 6. Additional condition check and exit within an anonymous class from Bug

#20421

this cluster are expected to be algorithmic or functional
changes to behavior. Seven faults in this cluster were manually
inspected.

Five of the faults that were manually inspected fall into this
broad category of changes. Bug 15506 was fixed by adding a
busy indicator. The CVS commit for Bug 19270 included
changes for another bug, which makes automated analysis
challenging. The large number of faults that met our
expectations in this cluster is encouraging, but further analysis
is needed.

9) Cluster 9 – Garbage Collector
As mentioned previously, the last cluster acts as a “garbage

collector” when the I1 criterion function is used. The
descriptive features for this cluster were an update to an
assignment (24.6%), addition of an assignment (12.7%),
removal of a variable declaration (8.0%), update of a return
statement (6.6%), and removal of a function (6.5%). The
variation in change types and the scores for each feature
support previous findings about the nature of the last cluster
when I1 is used [23].

We expect this cluster to have varied faults that are either
uncommon or simple faults that are obfuscated by
implementation details. These may represent a set of faults for
which automated classification is not possible or is not
warranted due to their infrequent nature. A total of eight faults
from this cluster were manually inspected.

There was no discernible pattern to these changes. Some of
the changes were large, while others were small and infrequent.
It is important to note that the fix for Bug 16027 includes some
changes that were hidden because they were part of a return
statement.

V. THREATS TO VALIDITY
Wohlin et al. describe four areas where the validity of the

results may be threatened [25], we discuss threats in each of
these areas.

Conclusion validity concerns the statistical significance of
the result. CLUTO allows the clustering of data to be repeated
a number of times to avoid incorrect results due to a local
minimum or maximum. We used a value of ten for the number
of iterations, commonly used in clustering experiments with
this tool [22], [23]. We undertook statistical analysis to test our
hypotheses, and checked the assumptions of the tests that were
used.

Internal validity is concerned with our ability to correctly
measure the influence of the independent variables on the
dependent variables and the elimination of possible
confounding variables. We use publicly available data to
construct our dataset. In addition, we are in the process of
repeating the experiment on multiple versions of the Eclipse
software. Initial results indicate that our clustering results are
consistent across versions.

Construct validity refers to how well the independent and
dependent variables in the study measure what is intended. It is
difficult to measure the correctness of clustering when a correct
answer is unknown. Purity and entropy measures require a

classified dataset, and the manual classification of faults after
the fact is time consuming and error prone.

External validity refers to the ability to generalize the
results of the study. This paper presents early work that
requires additional validation before generalization is possible.
To achieve results that can be generalized we will extend the
study with multiple versions of Eclipse and other software
systems. The study also depends on tools that are currently
available only for Java source code. We cannot claim that our
results can be generalized outside of this particular dataset.

Our manual inspections of faults within each cluster are
subjective. In order to obtain statistically valid results,
independent reviewers should be used to classify the faults
manually and inter-rater agreement should be measured. The
number of faults inspected should also be increased to a
statistically significant sample. Despite these limitations, the
manual inspection in this study did find specific issues that can
be used to guide improvement to the change taxonomy.

VI. RELATED WORK
DeMillo and Mathur present a syntactical classification of

software faults [8]. DeMillo and Mathur define the notion of a
syntactic transform that captures the difference in two versions
of the software’s abstract syntax tree. The classification is
automatable, but results in a large number of software fault
types. Our research was motivated by this approach, and the
idea that “syntax is the carrier of semantics” [8]. DeMillo and
Mathur validate their work by classifying 291 software faults
from TeX. Faults are classified in a hierarchy to handle cases
where there are multiple changes involved in a single fix. The
change types used by DeMillo and Mathur were designed for
Pascal, and include changes more granular than statement level
changes (e.g. wrong operator).

Pan, Kim, and Whitehead describe 27 automatically
extractable bug fix patterns for Java source code. A bug fix
pattern describes a syntactical pattern that occurs as one part of
a software fault fix, such as changing the parameters of a
method call [14]. Pan et al. consider a change to the source
code as a collection of “hunks,” and refer to the hunk in the
faulty and fixed version of the code as a “hunk pair.” The bug
fix patterns cover 45.7%-63.3% of the total fault fix hunk pairs
in seven open source java projects [14]. Pan et al. found the
frequency of these patterns to be surprisingly consistent,
concluding that developers have difficulty with specific code
situations at a highly consistent rate. Our research has
similarities, but differs in two major ways. First, our work does
not look for pre-defined patterns of changes. The extended
change taxonomy can be used as a basis to do this, but
additional applications are possible. Secondly, we look at a
fault fix as a whole, rather than individual “hunk pairs” in the
fault fix. This is an important distinction when the fault that is
being examined is a large, complex change.

Thung et al. categorize defects into three super-categories
of ODC defect types, control and data flow, structural, and
non-functional [26]. Text from the bug reports is pre-processed
to extract features based on the bug report. The code is pre-
processed to extract counts for additions and deletions of nodes

in the abstract syntax tree. Thung et al. empirically validated
their approach on 500 defects from three software systems,
with a 77.8% average accuracy using a SVM multiclass
classification algorithm [26]. Our method currently focuses on
source code changes alone. Our study builds on the change
types that are extracted from the Evolizer toolset, and thus uses
a more sophisticated algorithm for the comparison of abstract
syntax trees [12], [20].

VII. CONCLUSIONS
In this study, we extend the change taxonomy developed by

Fluri and Gall [13], as implemented in ChangeDistiller [12],
[20], and evaluate its use for analyzing software fault fixes.
First, we extend the change taxonomy by expanding statement
delete, statement insert, statement update, and statement
ordering change change types to include the type of statement
that was changed. We record the occurrence of these change
types in two versions of Eclipse. We find that the extended
change types occur more frequently than the original change
types, and that their occurrence in the two versions is
consistent.

In order to further validate the extended change types, and
their patterns of occurrence, the CLUTO clustering toolkit is
used to cluster the fault fixes. Using the repeated bisection
clustering method and the cosine similarity, the I1 criterion
function performs better than the I2 criterion function with
respect to the average internal similarity of the clusters in the
resulting solution. The ability of I1 to create tight clusters and
one cluster that acts as a “garbage collector” in a noisy data set
aids the investigation [23].

The results of clustering where k=10 are analyzed. The
similarity of the cluster is explained by one to four features that
are shared by the faults in the cluster. These descriptive
features are used to automatically label the cluster. The clusters
for Eclipse 2.0 and 3.0 and their sizes were compared. We
found that the occurrence and size of the clusters were
correlated, indicating that the clustering of these change types
is consistent in these two versions of the software.

A subjective analysis of a subset of faults in each cluster
provides guidance on the types of faults characterized by
different source code change types. Many fault fixes are in
agreement with our expectations based on the syntactical
changes that were made to the fault. For example, faults fixed
with changes to condition expressions that are inspected in this
study are in line with expectations.

Several of the faults that were inspected exposed limitations
in the taxonomy. ChangeDistiller stops the comparison of the
abstract syntax trees at the statement level due to its intent in
analyzing change couplings. As a result, update changes to
variable declarations, assignments, or return statements do not
provide the granularity necessary for fault analysis. We saw a
surprising number of problems with anonymous classes as
method parameters, and within variable declarations, that also
require more granular information about the change. These
findings indicate that we must extend the comparison beyond
differences in statements, to differences in arguments and
expressions. Based on our results, we make the case that is

necessary to have a taxonomy that can indicate changes to
operators and literals in addition to structure.

Faults that fix dependency problems provide additional
challenges. Adding change types for the addition and removal
of import statements may aid in this effort, but more
sophisticated dependency analysis for build and run-time
dependencies may be necessary.

We encountered a number of common software repository
mining problems during our manual inspection. Code
refactoring that is included in a commit for a bug fix can make
analysis difficult. A simple change, such as renaming a variable
for readability, should be handled at the semantic level of
analysis. More complex refactoring changes will still make
automated analysis difficult. Developers sometimes include
multiple bug fixes in a single commit, as evidenced by Bug
#19270. Bug #18468 was mislabeled as Bug #18486, which
can be problematic when bug database information is cross-
referenced with the syntactical changes.

We conclude that the current taxonomy may be helpful for
analyzing a subset of fault types, but that the taxonomy must be
further extended for syntactical fault analysis. Improving the
change taxonomy and broadening the validation of the results
are the focus of our future work.

VIII. FUTURE WORK
Our first step to extend this study will be to expand the

change taxonomy to provide more granular information about
source code changes that occur within a statement. Update
Statement changes, even in their expanded form, can vary
widely for variable declarations, assignments, and return
statements. We must also account for anonymous classes when
used within variable declarations and as method parameters.

In future studies we will expand this work to include
additional datasets from subsequent versions of the Eclipse
software. In particular, we would like to study the results for
Eclipse version 3.3 (Europa) through 3.6 (Helios). This will
provide data on four versions of Eclipse over a four year
period. We also plan to compare the change characteristics of
fault fixes with those of other changes, such as new features
and refactoring changes.

Automated or semi-automated fault classification opens the
door to large scale studies on software faults in open source
systems that are currently cost prohibitive. In future work we
hope to apply our fault classification technique to study fault
links. Hayes et al. define a fault link as “a relationship between
the type of module being developed or changed and the fault
type” [17].

In a case study with the Apache web server and the Mozilla
web browser, Hayes et al. found evidence that suggests there is
a relationship between the module type and the fault type [17].
In a second study, Hayes et al. empirically validated that the
application of fault link data to code inspections can improve
the number of faults found and improve the detection of faults
that are difficult to locate [18]. Fault links have potential
applications in many verification and validation (V&V)
techniques. The application of automated fault classification

and automated module classification will provide access to
significantly more data for the exploration of fault links.

ACKNOWLEDGMENT
This research is partially sponsored by NASA under grant

NNG05GQ58G.

REFERENCES
[1] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.

Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal Defect
Classification-A Concept for In-Process Measurements,” IEEE
Trans. Softw. Eng., vol. 18, no. 11, pp. 943–956, 1992.

[2] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L.
Feldmann, Y. Guo, and S. Godfrey, “Defect categorization:
making use of a decade of widely varying historical data,” in
Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and
measurement, Kaiserslautern, Germany, 2008, pp. 149–157.

[3] M. Leszak, D. E. Perry, and D. Stoll, “A Case Study in Root
Cause Defect Analysis,” in Software Engineering,
International Conference on, Los Alamitos, CA, USA, 2000,
p. 428.

[4] W. D. Yu, “A software fault prevention approach in coding
and root cause analysis,” Bell Labs Technical Journal, vol. 3,
no. 2, pp. 3–21, 1998.

[5] D. E. Perry and W. M. Evangelist, “An Empirical Study of
Software Interface Faults,” 1985.

[6] D. E. Perry and W. M. Evangelist, “An Empirical Study of
Software Interface Faults - An Update,” in Proceedings of the
Twentieth Annual Hawaii International Conference on System
Sciences., Hawaii, 1987, vol. II, pp. 113–126.

[7] B. Beizer, Software Testing Techniques, 2nd Edition, 2 Sub.
International Thomson Computer Press, 1990.

[8] R. A. Demillo and A. P. Mathur, “A Grammar Based Fault
Classification Scheme and its Application to the Classification
of the Errors of TEX,” Software Engineering Research Center;
and Department of Computer Sciences; Purdue University,
Technical Report, 1995.

[9] N. Li, Z. Li, and X. Sun, “Classification of Software Defects
Detected by Black-box Testing: An Empirical Study,” in
Proceedings of 2010 Second World Congress on Software
Engineering (WCSE 2010), Wuhan, China, 2010, pp. 234–
240.

[10] W. Du and A. P. Mathur, “Categorization of software errors
that led to security breaches,” In Proceedings of the 21st
National Information Systems Security Conference, 1998.

[11] A. A. Shenvi, “Defect prevention with orthogonal defect
classification,” in Proceeding of the 2nd annual conference on
India software engineering conference, Pune, India, 2009, pp.
83–88.

[12] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall, “Change
Distilling:Tree Differencing for Fine-Grained Source Code
Change Extraction,” IEEE Transactions on Software
Engineering, vol. 33, no. 11, pp. 725–743, 2007.

[13] B. Fluri and H. C. Gall, “Classifying Change Types for
Qualifying Change Couplings,” in 14th IEEE International
Conference on Program Comprehension (ICPC’06), Athens,
Greece, 2006, pp. 35–45.

[14] K. Pan, S. Kim, and E. Whitehead, “Toward an understanding
of bug fix patterns,” Empirical Software Engineering, vol. 14,
no. 3, pp. 286–315, Jun. 2009.

[15] M. Hamill and K. Goseva-Popstojanova, “Common Trends in
Software Fault and Failure Data,” Software Engineering, IEEE
Transactions on, vol. 35, no. 4, pp. 484–496, 2009.

[16] “IEEE Standard Glossary of Software Engineering
Terminology,” IEEE Computer Society, IEEE Std 610.12-
1990, Dec. 1990.

[17] W. Farrr, “Software reliability modeling survey,” in Handbook
of software reliability engineering, 1996, pp. 71–117.

[18] C. W. Holsappe, “DSS Architecture and Types,” in Handbook
on Decision Support Systems 1, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008.

[19] S. Krishnan, C. Strasburg, R. R. Lutz, and K. Goševa-
Popstojanova, “Are change metrics good predictors for an
evolving software product line?,” in Proceedings of the 7th
International Conference on Predictive Models in Software
Engineering, New York, NY, USA, 2011, pp. 7:1–7:10.

[20] H. C. Gall, B. Fluri, and M. Pinzger, “Change Analysis with
Evolizer and ChangeDistiller,” IEEE Software, vol. 26, no. 1,
pp. 26–33, 2009.

[21] G. Karypis, “CLUTO: A Clustering Toolkit,” University of
Minnesota, Department of Computer Science, Minneapolis,
MN, Technical Report #02-017, Nov. 2003.

[22] Y. Zhao and G. Karypis, “Evaluation of hierarchical clustering
algorithms for document datasets,” in Proceedings of the
eleventh international conference on Information and
knowledge management, New York, NY, USA, 2002, pp.
515–524.

[23] Y. Zhao and G. Karypis, “Empirical and Theoretical
Comparisons of Selected Criterion Functions for Document
Clustering,” Mach. Learn., vol. 55, no. 3, pp. 311–331, Jun.
2004.

[24] B. G. Freimut, “Developing and Using Defect Classification
Schemes,” Fraunhofer IESE, IESE-Report 072.01/E, Sep.
2001.

[25] C. Wohlin, P. Runeson, and M. Höst, Experimentation in
Software Engineering: An Introduction, 1st ed. Springer,
1999.

[26] F. Thung, D. Lo, and L. Jiang, “Automatic Defect
Categorization,” in Reverse Engineering, Working Conference
on, Los Alamitos, CA, USA, 2012, vol. 0, pp. 205–214.

[27] J. H. Hayes, I. R. C.M., V. K. Surisetty, and A. Andrews,
“Fault Links: Exploring the Relationship Between Module and
Fault Types,” in Dependable Computing - EDCC 2005, 2005,
pp. 415–434.

[28] J. H. Hayes, I. R. Chemannoor, and E. A. Holbrook,
“Improved code defect detection with fault links,” Software
Testing, Verification and Reliability, vol. 21, no. 4, pp. 299–
325, Dec. 2011.

	I. Introduction
	II. motivation
	III. Approach
	A. Data Collection
	B. Clustering

	IV. Validation
	A. Frequency of Change Types in Fault Fixes
	B. Evaluation of Criterion Functions
	C. Consistency of Clusters for Eclipse 2.0 and 3.0
	D. Manual Inspection of Faults in Each Cluster
	1) Cluster 0 – Update Variable Declaration
	2) Cluster 1 – Conditional Expression Changes
	2) Cluster 2 – Additional Functionality
	3) Cluster 3 – Update Method Call
	4) Cluster 4 – Insert If and Return Statements
	5) Cluster 5 – Insert If Statement and Parent Change
	6) Cluster 6 – Insert Method Call
	7) Cluster 7 – Delete Method Call
	8) Cluster 8 – Insert If, Variable Declaration, Method Calls and Assignments
	9) Cluster 9 – Garbage Collector

	V. Threats to Validity
	VI. Related Work
	VII. Conclusions
	VIII. Future Work
	Acknowledgment
	References

