
Traceability Challenge 2013: Query+ Enhancement
for Semantic Tracing (QuEST)

Software Verification and Validation Research Laboratory (SVVRL) of the University of
Kentucky

Wenbin Li, Jane Huffman Hayes
Computer Science Department

University of Kentucky
Lexington, Kentucky, USA

wenbin.li@uky.edu, hayes@cs.uky.edu

Abstract—We present the process and methods applied in
undertaking the Traceability Challenge in addressing the
Ubiquitous Grand Challenge, Research Project 3. Terms
contained within queries (along with document collection terms,
hence the “+”) have been enhanced to include semantic tags that
indicate whether a term represents an action or an agent. This
information is obtained by calling the Senna semantic role
labeling tool. The standard TF-IDF component in TraceLab is
then used to recover trace links. The QuEST method was applied
to four datasets. Results based on the provided answer sets show
that QuEST improved Mean Average Precision (MAP) for two
artifact pairs of two of the datasets when the artifacts used
natural language, but generally did not outperform unaugmented
datasets not using natural language. We provide insights on this
finding.
Index Terms—Traceability, Semantics, Trace Recovery,

Challenge, Ubiquitous, Ubiquitous Grand Challenge, Research
Project 2

I. INTRODUCTION
As part of developing traceability that is ubiquitous

(Ubiquitous grand challenge), we seek to automatically
generate trace links of high quality (research project 3, “Total
automation of trace creation and trace maintenance, with
quality and performance levels superior to manual efforts.”1).
Toward that end, we look to semantics for assistance. The
topic of semantics has long been discussed and studied in the
traceability community: semantics of trace links, semantics of
textual content, semantics of context, etc. Basically, semantics
refers to our attempts to understand the meaning of the items
with which we work.

When focusing on trace link recovery or generation,
researchers have attempted to utilize or capture semantic
meaning a number of different ways. Researchers have applied
thesauri to augment the terms or words found in source (queries)
and target (document collection) artifacts being traced -
generally adding synonyms, acronyms, phrases, and/or

1 http://www.coest.org/index.php/research-directions/grand-
traceability-challenges?view=gctchallenge&challengeId=12

addressing polysemy [1-8]. Researchers have applied
techniques that attempt to understand the meaning or concepts
inherent in text such as topic modeling, Latent Semantic
Indexing (LSI), and Latent Dirichlet Allocation (LDA) [9-12].

To illustrate the importance of semantic information,
consider the following. A textual requirement describes the
behavior of an entity that will be part of the developed software
system, such as “the nodes shall forward all messages to the
server,” while a target design element mentions the entity “in
passing” in the text, such as “the system contains x nodes.” In
this case, it is less likely that there is a link between these two
artifacts. Current non-semantic tracing methods may use the
co-occurrence of the entity name as evidence of a link simply
because the term appears in both artifacts.

Researchers have also used parts of speech (POS) tagging
and have written rules to generate traceability links [13]. In
this work, we go one step beyond POS tagging and attempt to
understand the roles that various portions of an artifact element
play in order to add semantic information to the source and
target artifacts. POS information can indicate that a noun has
been identified; it cannot indicate that the noun is an agent that
can perform a specific action; it cannot identify the actions that
an agent can perform. To accomplish these, we enhance the
artifacts by adding semantic role information. Semantic role
labeling refers to the identification and labeling of arguments in
text [14]. Specifically, we annotate the agents within natural
language textual statements that form the source and target
artifacts. We also expanded our method by labeling the action
verbs in the text. However, the performance was not improved
with the action verbs labeled.

The paper is organized as follows. Section 2 discusses how
we enhanced the source and target elements as well as how we
used TraceLab to accomplish our work. Section 3 presents the
results. Finally, we present conclusions and future work in
Section 4.

978-1-4799-0495-2/13/$31.00 c© 2013 IEEE TEFSE 2013, San Francisco, CA, USA95

Figure 1. TraceLab Components for QuEST using Senna Role Labeler.

II. ENHANCING QUERIES

In this section, we discuss our approach as well as our
experiences with TraceLab and Senna.

A. QuEST Approach
Our approach aims to improve the performance of tracing

by enhancing queries using semantic information. Current
algorithms used for tracing decide if there is a link between two
artifacts based on their shared keywords. However, the
semantic meaning of the same keyword may be different in
different artifacts, and this difference is ignored in current
tracing methods. For instance, if one artifact describes the
behavior of an entity while the other artifact merely mentions it
in the text, then it is less likely that there is a link between these
two artifacts; current non-semantic tracing methods will use
this co-occurrence of keywords as evidence of a link simply
because the term appears in both artifacts. The key idea of our
approach is that we can convert one keyword into multiple new
keywords based on its semantics in different artifacts. We do
this by appending tags to the keywords. The resulting new
keywords will not be used as a proof of the links among
artifacts if their tags are different.

For now the semantic information we use is the role(s) of a
word. A semantic role is the underlying relationship that a
word has with the action, the behavior of entities that change
the state of the system. Such roles include agent, object, goal,
etc. For now we focus on the role of agent, the entities that
perform actions. We do so because agent is the most common
role, every action should be performed by an agent.

We use Semantic Role Labeling (SRL) to find the semantic
information we need. SRL is a natural language processing
task that detects the semantic arguments of verbs or predicates
and the roles of these arguments. For example, given “a system
updates data,” SRL finds the verb update with system as its
agent. In this case, our method appends the tag (AG) to system
to represent semantic information. As a result, the system(AG)
and other occurrences of simply system become different
keywords, making it less likely that the artifacts with
system(AG) and system will be linked.

We propose the approach to improve the precision of
tracing. The major challenge of the approach is how to append
tags to the correct words. Identifying the “agent” words is not
an easy task due to the ambiguity and complexity of natural
language.

We use the semantic role labeler Senna [15] in our approach.
Senna provides Parts of Speech (POS) tags and chunks as well
as SRL information. We use the Senna semantic roles and
chunks to identify the words that should be appended with tags.
For example, given the following requirement (from CM-1):

“The dpu ccm shall implement mechanism whereby large
memory loads and dumps can be accomplished
incrementally.”
SRL finds two actions: implement and accomplish. The agent
of implement is dpu ccm, which is a chunk being marked as a
noun phrase, while the agent of accomplish is unknown. In this
case, it is clear that dpu ccm performs the action. However, the
agents found by Senna may contain more than one chunk. For
instance, given a requirement:

96

“The node that has received the message should save the
message.”
the agent is “the node that has received the message.” It is
obvious that appending the tag to all words introduces too
much noise because this will generate unnecessary new
keywords, such as message(AG) and received(AG), and the
only word we want to identify is node.

To address this challenge, we designed a heuristic method
after reviewing multiple datasets. Our approach assumes that
the first noun phrase chunk in the identified agent is the real
“agent chunk. “ However, appending the tag to each word in
this noun phrase may still cause a problem. For instance, given
a requirement that states: “the activated node should do
something,” the noun phrase is activated node and the tag
should not be appended to activated. To solve this problem, the
heuristic method only appends tags to the last word in the noun
phrase. Thus, the heuristic method changes the previous
example to:

“The dpu ccm(AG) shall implement mechanism whereby
large memory loads and dumps can be accomplished
incrementally.”
The (AG) tag is only appended to ccm even though the agent is
dpu ccm. It should be noted that it is possible that all words in
a noun phrase chunk form the name of the entity, such as dpu
ccm. We decided that these cases should be handled by other
preprocessing steps, such as replacing dpu ccm with dpuccm.
Thus, the name of an entity is one word, which will be tagged.

B. TraceLab Components and Datatypes
To implement our approach, we first created four new

TraceLab types to model the output of Senna: NLPSentence,
NLPPredicate, NLPChunk, and NLPWord. The constructor of
NLPSentence reads a string output by Senna which includes
the POS, chunks, and SRL information, and creates a list of
predicates, chunks, and words objects. Each NLPPredicate
object also contains a set of arguments and their roles.

We then created two components: SennaRunner and
AgentAttacher. SennaRunner calls Senna and passes the source
and target artifacts to the semantic role labeler. Senna
generates results for all the input artifacts. SennaRunner then
creates and outputs a set of NLPSentence objects based on
these results, one for each input artifact. AgentAttacher reads
the output of SennaRunner and identifies the agent words
using the heuristic method described above. The component
outputs a list of artifacts with all identified words appended
with the (AG) and (AC) tag.

We also conducted a study in the TraceLab environment to
validate our approach. We designed two experiments; one for
standard vector space model tracing and the other for tracing
with the tags attached. We compared their results. The
dependent variable is Mean Average Precision (MAP). The
null hypothesis is that there is no difference between the MAP
of both experiments, and the alternative hypothesis is that there
is a difference.

Figure 1 shows the TraceLab experiment for QuEST. All
components except for SennaRunner and AgentAttacher are
reused TraceLab components. At the beginning of the

experiment, source and target artifacts are imported separately.
Then the Cleanup Preprocessor removes all non-characters
(punctuation marks, numbers, etc.) in these artifacts.
SennaRunner uses these “clean” artifacts as input and
AgentAttacher returns updated artifacts in which all agents are
appended with the tag (AG). (We originally appended (AG)
and (AC) but decided to study the effect of just (AG) for this
Challenge) The next step is stop word removal. Then, the tfidf
dictionary index is built based on the updated target artifacts
and the Tracer component generates the similarity matrix. The
CoestAnswersetImporter imports the baseline matrix, and the
Metric Computation component computes the MAP for these
two matrices.

The standard experiment is similar; the only difference is
that the artifacts are not updated by SennaRunner and
AgentAttacher. The output of Cleanup Preprocessor is directly
input to the Stopwords Remover.

It should be noted that the sequence of Cleanup
Preprocessor, AgentAttacher, and Stopwords Remover cannot
be changed. AgentAttacher generates words such as
system(AG). If Cleanup Preprocessor is connected after
AgentAttacher, the words above will become system ag, which
cannot be used as a single keyword. Additionally, if stop word
removal is performed before AgentAttacher, then the text will
be hard for Senna to parse.

C. Experience with TraceLab
We found that designing and implementing experiments in

TraceLab can save a great amount of time and effort. As
mentioned earlier, we found most of the components we
needed in the TraceLab library. This meant our main task was
to create the workflow and assign the inputs and outputs for
each component. The standard interfaces of the components
made it easy to connect the components together. This saved
us much time as we did not need to “reinvent the wheel.”

The process of creating our new components was also
straightforward. We wrote the code for running Senna and
attaching the agent tag previously while researching this idea;
converting this code into TraceLab components was an easy
task. Also, we studied the effect of stopword removal and
preprocessing cleanup on our approach with a snap of the
fingers. In TraceLab, we only had to change the order among
the corresponding components. It would be much more
complex if we had to write all those programs on our own as
well as and change the call order of the methods. Last but not
least, the Workspace View is very convenient for testing.

There were a few issues that we encountered during this
study, largely due to TraceLab being in alpha testing. First,
we found that the tracer component for using the TF-IDF
dictionary generated strange results. When we traced an
artifact to itself, we expected the similarity score to be 1;
however, the score returned by TraceLab was much lower.
Second, while TraceLab provides a component to visualize
the results, there is no component available for exporting the
results; this functionality would be very useful for data
analysis. Third, sometimes TraceLab freezes up after we
refresh the component library; fortunately this was easily
worked around: we just had to close the workspace and start a

97

new one. These issues have been reported and will be fixed in
future releases.

III. RESULTS

We ran the experiment on the EasyClinic dataset, provided
for the TEFSE Challenge in 2009. This dataset contains four
types of artifacts: use cases (uc), description of interaction
diagrams (id), test cases (tc), and code classes (cc). We traced
from use cases to the other three types of artifacts (uc-id, uc-tc,
uc-cc). The results are shown below.

TABLE I. MAP RESULTS FOR EASYCLINIC DATASET

Standard Agent attached
uc-cc 0.654 0.591
uc-tc 0.685 0.526
uc-id 0.518 0.629

The results show that MAP improved by 21% for uc-id.
However, the MAP decreases by 9% in uc-cc, and by 23% in
uc-tc.

It appears that appending the agent tag makes the
performance for two of the artifact pairs (uc-cc and uc-tc)
worse. However, it should be noted that Senna parses
structured natural language text, and the performance of our
approach is dependent on this and the correctness of Senna.
We therefore investigated Senna’s performance for our
artifacts.

Of the four types of artifacts in EasyClinic, only the
descriptions of interaction diagrams are completely written in
natural language. The use cases contain general descriptions
which are written in natural language but also contain the
description of users’ steps such as:

1 View the mask to enter information needed
2 Inserts data about the anagrafica of laboratory
3 Confirm placement

First, these steps are hard for Senna to parse. Second, these
steps specify “(users) do ...,” and the agents are users; while
interaction diagrams describe the structure of the software
system and use the entities in the system as agents. Test cases
and code classes contain even less structured natural language;
the majority of tc texts are the specification of input/output
data, such as:

Input Visit selected:
06/10/2003 hours 09 00 Visit control .

Moreover, the tc texts contain many formatted descriptions that
Senna cannot parse:

Classes cover valid: CE4 CE8 CE13
Classes are not valid: None
High Priority .

The code classes are similar to the test cases. The results above
imply that there is some relation between the amount of
structured natural language contained in the artifacts and the
performance of our approach (the more natural language text,
the better our approach works, and vice versa). The presence

of non-translated Italian terms in EasyClinic may also have
caused issues for Senna.

We also performed the experiment on the WARC, PINE,
and CM1 datasets. We traced from WARC functional
requirements to design elements, from Pine requirements to
use cases, and from CM1 requirements to design elements.
Based on our findings for EasyClinic, we expected QuEST to
work well for WARC and CM1, but not for Pine.

TABLE II. RESULTS FOR WARC, PINE, AND CM1 DATASET

Standard Agent attached
WARC 0.56 0.532
Pine 0.539 0.528
CM1 0.492 0.495

The results of the two methods are close, though the standard
approach performed slightly better. This may be explained by
the discussion above, for instance, the use cases of Pine
contain texts such as:

User is looking at main menu
User presses Folder List
User presses right one time, selecting sent-mail.

In such cases, the only agent is User, while the requirements of
Pine are concerned with “what the system should do.” We also
found that some natural language artifacts such as the
requirements in WARC contain the header FR before the text.
Such headers will not cause problems for the standard
approach, because high level or low level artifacts share the
same header. But these headers can cause mistakes for our
approach: our heuristic method of identifying agents is
looking for the first noun phrase in agents, and these headers
are always parsed as the first noun phrase in an agent. In the
case above, the AgentAttacher will generate fr(AG) for a large
number of WARC requirements, which is meaningless. We
eliminated these headers by using a stopword removal
component in TraceLab. Interestingly, while the agents were
correctly tagged, the performance of our approach did not
improve. We found that although several true links were found
because of the agents being correctly tagged, some other true
links were missed. The reason is that at least one artifact of the
missed links did not contain the agent keywords, and the
header (tagged or not) caused coincidental matches.

As mentioned above, we also tried to append (AC) tags to
the action verbs found by Senna. Interestingly, all the results
using both (AC) and (AG) tags are worse than the results when
only using the (AG) tags. It is possible that verbs do not assist
with tracing.

It seems the experiment results do not prove that our
QuEST approach is generally better than the non-semantic
approach. However, the results elucidate many interesting
lessons/observations. First, our approach should not be used to
trace artifacts such as code or test cases which are not
comprised of largely natural language text. Second, the
semantic tagging of an agent is not useful if the artifacts are
based on different points of view. For example, use cases are

98

concerned with what the users want to do, while requirements
specify what the system should do. Third, the format of the text,
such as the header, may lead to errors for the natural language
parsers and thus decrease the performance of the QuEST
approach.

Nonetheless, our approach still proves to be very efficient
in the tracing of EasyClinic uc-id. This shows that semantic
information can be very helpful when both artifacts are written
in natural language. It should be noted that less than half of the
texts in the use cases are natural language, but the
improvement was still impressive (21%).

IV. CONCLUSION AND FUTURE WORK

It should be noted that the semantic work represented in this
paper is merely a first step. As mentioned earlier, Senna
provides much more semantic information than just the actions
and agents. Given an action, Senna can also extract its goal, its
object, its manner, etc. Also, there are many other natural
language processing tools, such as Stanford Parser [16,17], that
provide more functionality for analyzing syntax and semantics.

Although the semantic meaning of agent was not useful in
the tracing between use cases and requirements in our study,
other techniques may find information that indeed connects
these two artifact types. Also, there may be better ways of
enhancing queries and document collections than simply
appending tags to words, considering how much information
we can possibly add to the artifacts.

Additionally, the relation between our approach and existing
preprocessing tasks is also worth studying. Some possible
questions to study include: If we combine a stemming
technique and our approach, will it make our approach perform
better? How does the use of a splitter impact our approach?
Will a thesaurus affect the results of our approach?

ACKNOWLEDGMENT

This work is funded in part by the National Science
Foundation under NSF grants CCF-0811140 (research) and
ARRA-MRI-R2 500733SG067 (benchmark development).
This work was previously sponsored by NASA under grant
NNG05GQ58G. We thank Dr. Maureen Doyle for helpful
comments on an earlier version of the paper.

REFERENCES

[1] S K Sundaram, J H Hayes, A Dekhtyar, and E A Holbrook.
2010. “Assessing traceability of software engineering artifacts.”
Journal of Requir. Eng. 15, 3 (September 2010), 313-335.

[2] J H Hayes, A Dekhtyar, and S Sundaram, “Improving After-the-
Fact Tracing and Mapping to Support Software Quality
Predictions,” IEEE Software, Volume 22, Number 6,
November/December 2005, pp. 30 – 37.

[3] P Maeder, M Riebisch, and I Philippow: “Traceability for
Managing Evolutionary Change,” 15th International Conference
on Software Engineering and Data Engineering (SEDE-2006):
1-8.

[4] J H Hayes, A Dekhtyar, and S Sundaram*, “Advancing
Candidate Link Generation for Requirements Tracing: The
Study of Methods,” IEEE Transactions on Software Engineering,
Volume 32, No. 1, pp. 4-19, January 2006.

[5] J H Hayes, A Dekhtyar, and J Osbourne, “Improving
Requirements Tracing via Information Retrieval,” in
Proceedings of the International Conference on Requirements
Engineering (RE), Monterey, California, September 2003, pp.
138 – 148.

[6] J H Hayes, A Dekhtyar, S Sundaram, and S Howard, “Helping
Analysts Trace Requirements: An Objective Look,” in
Proceedings of IEEE Requirements Engineering Conference
(RE) 2004, Kyoto, Japan, September 2004, pp. 249-261.

[7] J Lin, C C Lin, J C Cleland-Huang, R Settimi, J Amaya, G
Bedford, B Berenbach, O B Khadra, C Duan, and X Zou,
“Poirot: a distributed tool supporting enterprise-wide
traceability”, Proceeding of the 14th IEEE International
Conference on Requirements Engineering, Minneapolis, MN,
2006, pp. 356-357.

[8] X Zou, “Improving Automated Requirements Trace Retrieval
Through Term-Based Enhancement Strategies,” DePaul
University, Technical report 4-1-2009, 2009.

[9] H U Asuncion, A U Asuncion, and R N Taylor. 2010. “Software
traceability with topic modeling.” In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering -
Volume 1 (ICSE '10), Vol. 1. ACM, New York, NY, USA, 95-
104.

[10] A Marcus and J I Maletic, "Recovering documentation-to-
source-code traceability links using latent semantic indexing,"
Software Engineering, 2003. Proceedings. 25th International
Conference on , vol., no., pp. 125- 135, 3-10 May 2003.

[11] A D Lucia, R Oliveto, and G Tortora. 2008. Adams re-trace:
traceability link recovery via latent semantic indexing. In
Proceedings of the 30th international conference on Software
engineering (ICSE '08). ACM, New York, NY, USA, 839-842.

[12] H Jiang; T N Nguyen.; I X Chen; H Jaygarl; and C K Chang,
"Incremental Latent Semantic Indexing for Automatic
Traceability Link Evolution Management," Automated Software
Engineering, 2008. ASE 2008. 23rd IEEE/ACM International
Conference on , vol., no., pp.59-68, 15-19 Sept. 2008.

[13] G Spanoudakis, A Zisman, E Pérez-Miñana, and P Krause:
Rule-based generation of requirements traceability relations.
Journal of Systems and Software (JSS) 72(2):105-127 (2004)

[14] L Màrquez, X Carreras, K C Litkowski, S Stevenson, “Semantic
Role Labeling: An Introduction to the Special Issue,”
Computational Linguistics, June 2008, Vol. 34, No. 2, Pages
145-159.

[15] Senna, http://ml.nec-labs.com/senna/, last accessed January 25,
2013.

[16] Marie-Catherine de Marneffe, Bill MacCartney and Christopher
D. Manning. 2006. Generating Typed Dependency Parses from
Phrase Structure Parses. In LREC 2006.

[17] Dan Klein and Christopher D. Manning. 2003. Accurate
Unlexicalized Parsing. Proceedings of the 41st Meeting of the
Association for Computational Linguistics, pp. 423-430.

[18] Russel, S.J. Norvig, P. 1995. Artificial Intelligence: A Modern
Approach, Prentice-Hall, Englewood Cliffs, New Jersey, USA.

99

