
Towards More Efficient Requirements Formalization: A
Study

Wenbin Li, Jane Huffman Hayes, and Miroslaw Truszczynski

Department of Computer Science, University of Kentucky, Lexington, KY 40506-0633, USA
wenbin.li@uky.edu hayes,mirek@cs.uky.edu

Abstract. [Context and motivation] Validating natural language requirements
is an important but difficult task. Although there are techniques available for val-
idating formalized requirements, the gap between natural language requirements
and formalism is huge.[Question/problem] As part of a larger piece of work
on temporal requirements consistency checking, we developed a front end to
semi-automatically translate natural language requirements into an formal lan-
guage called Temporal Action Language orTeAL. This work is based on an
underlying assumption that human analysts can assist us in filling in the missing
pieces as we translate natural language temporal requirements toTeAL. [Prin-
cipal ideas/results]We performed a study to validate this assumption. We found
that our front-end tool is more effective and efficient than amanual process.[Con-
tribution] We present the design of our front-end and a study that measures the
performance of human analysts in formalizing requirementswith the help of an
automated tool.

Keywords: formal specification, temporal requirements, translation, requirement
comprehension.

1 Introduction

Temporal requirements play an important role in the specification, design, and devel-
opment of software systems. A mission-critical financial trading system requires that
certain transactions occur within a certain amount of time of other transactions (such
as posting the proceeds of a stock sale or logging realized dividend payments). An
e-commerce system requires that a payment be received priorto submitting an order
for processing. A safety critical pacemaker system requires that pacing occur within
milliseconds of certain detected events.

As these examples suggest, errors in specifying, interpreting, or implementing tem-
poral requirements can lead to disastrous consequences. Ifone or more requirements
related to the pacing of the heart are in conflict, a negative heart event might not trigger
a required life-saving pacing event. To address such issues, we undertake consistency
checking of temporal requirements. This is a labor intensive and tedious task, however.
Indeed, it is possible that a specification of a system contains so many temporal re-
quirements (and related contextual requirements) that it is not possible to check them
manually. Hence we look to automation for assistance.

Many powerful formal languages and specification techniques have been offered to
support temporal consistency checking [5, 11, 14]. Nonetheless, the main challenge for
the automation of temporal requirement consistency checking is that they are typically
represented as natural language text. There are several reasons for the use of text. Text
is highly expressive, there is little to no learning required to use it and, when carefully
used, natural text is precise and unambiguous. Yet, fully automated processing of textual
requirements remains a distant goal. To take advantage of the power of formal methods
in analyzing requirements specified in text, we need ways to translate the natural lan-
guage requirements into some formal language. However, every attempt to do so runs
into the question of whether the formal representation correctly captures the intended
meaning of the natural language requirements.

To address this long-standing criticism of formal methods,we have developed an
intermediate language to bridge the syntactically significant gap between low-level for-
malisms and natural language temporal requirements: the Temporal Action Language
(TeAL) [16]. We developed fully automated methods to translateTeAL to low-level
logic formalisms such as answer-set programming (ASP) [18, 19] programs and linear
temporal logic (LTL) [12] theories (the translation is the subject of another publication
[15]). That reduces the overall problem of consistency checking to that of producing
correctTeAL theories from the natural language representations of temporal (and con-
textual) requirements, and brings up a key question: how canTeAL theories be created
more efficiently?

We introduce a semi-automated method that translates natural language toTeAL.
The efficiency of this method rests on the assumption that humans can assist us during
the translation. We performed a study to validate this assumption. We found that our
tool is more effective and efficient at the translation task than a manual process.

This paper represents the first study to evaluate human ability to assist with semi-
automated translation to a formal language. Measures used in other fields such as for-
eign language translation have been applied in the study in order to gauge human ability
to assist withTeAL translation. The paper is organized as follows. Section 2 briefly de-
scribes the formal representations studied. Section 3 presents our approach to natural
language temporal requirement translation. Sections 4 and5 discuss validation and re-
sults, respectively. Section 7 and 8 analyze the results andthe feedback we collected
from participants. Section 8 provides conclusions and a look at future work.

2 Formal Representation of Temporal Requirements

Earlier, we introduced Temporal Action Language (TeAL) as a formal language for
supporting software requirement analysis [16]. TheTeAL language is an extension of
Action LanguageAL [4], a language designed for modeling actions and their effects and
for reasoning about ways in which a system can evolve. TheTeAL language retains all
the features ofAL and can also be used to specify temporal constraints. BecauseTeAL
is used to bridge the gap between natural language requirements and low-level logic
formalism, we designed its syntax to be as close to natural language as possible to
minimize analysts’ time and effort. We briefly describe the syntax below (see [16] for a
full description).

The basic components ofTeAL are actions, fluents, and temporal conditions. Ac-
tions change the state of the system. They are performed by agents. For example, the
TeAL expressionconnect(serA,nodeA)represents an action to establish a connection to
nodeA; serA is the agent that performs this action. Fluents represent atomic (boolean)
properties of the system. Complete and consistent sets of (possibly negated) fluents
describe the state of the system. For example, the fluentconnected(serA,nodeA)repre-
sents that the serverserA is connected to the nodenodeA. Temporal conditions spec-
ify temporal relationships on times when events occur. Suchevents include the start
and end of actions as well as the changes of system properties(fluents). InTeAL, we
use two prompts:commence Act andterminate Act , to represent the time when
actionAct starts and successfully finishes. InTeAL one can also relate two consecu-
tive occurrences of the same action to each other. To distinguish between them,TeAL
provides the keywordsprevious andnext, as in:commence previous Act and
terminate next Act . A fluent appearing in temporal conditions represents the time
when this fluent becomes true. Similarly, the negation of a fluent in temporal conditions
represents the time when this fluent becomes false. Additionally, we view the start of
the system as a special event;startTime represents when it happens.

Time moments represented by actions and fluents are connected by temporal re-
lationships. Given two time moments,t1 and t2, the basic relationship between them
can be: “t1 before/after t2,” or “ t1 and t2 are at the same time.” Additionally, require-
ments may specify more information, such as “t1 before t2 for some amount of time.”
TeAL provides eight keyword phrases to represent temporal relationships. Most types
of temporal relationships specify both time moments explicitly as, for example, in the
expression

received(server,message, node)within 5 second after

terminate send(node,message, server)

which encodes the requirement “the message is received by the server within 5 seconds
after it is sent by the node.” Such elementary relationships between time points are
calledtemporal conditions.

The keywordsand, or, andnot, as well as theif . . . then . . . phrase, can be
used together with temporal conditions to represent their boolean combinations, called
temporal constraints. The specific form of a temporal constraint used inTeAL is

if A1 and . . . and Ak, then B1 or . . . or Bm; (1)

whereA1 and . . . and Ak andB1 or . . . or Bm are temporal conditions or their
negations. An example of a temporal constraint inTeAL is an expression:

if not commence print(server,message)within 5 second

after received(server,message, node)

then terminate send(server, alarm) within next 2 second;

It captures the constraint “if a message is not printed within 5 seconds after it is re-
ceived, the server shall send an alarm within 2 seconds.”

As mentioned earlier,TeAL is an extension ofAL, and it reuses the syntax ofAL.
In particular,TeAL reuses the expressions of the following three forms:

State constraints L if P ; (2)

Dynamic causal laws a causes E if P ; (3)

Executability conditions impossible pr1, . . . , prk if P ; (4)

whereE, L, andP are lists of fluents and their negations andpr, pr1, . . . , prk are
prompts. Expression (2) captures the constraint that everystate satisfyingP must also
satisfyL. For example, theTeAL expression

powerOn(computer) if running(computer);

says that if a computer is running, the power must be on. Expression (3) specifies the
immediate effects of prompts. It says that if promptpr occurs in a state satisfyingP,
thenE must hold in the next state. For example, theTeAL expression

terminate connect(serA, nodeA)

causes connected(nodeA, serA) if systemOn;

describes what will happen when the actionconnect(serA, nodeA)finishes. Finally, ex-
pression (4) defines preconditions of prompts. It states that at least one ofpr1, . . . , prk
must not occur ifP holds at this time moment. For example, theTeAL expression

impossible commence write(nodeA, serA)

if not connected(serA, nodeA);

specifies that the serverserAand the nodenodeAmust be connected (is the prerequisite)
for the actionwrite(nodeA, serA)to be executable.

The expressions above do not specify temporal information.TeAL supports a more
general version of these expressions by allowing fluents to be replaced with temporal
conditions. This helps analysts to specify much more complicated preconditions and
effects such as in the followingTeAL expression:

impossible commence read(server,message)

if not received(server,message, node)within 3 second before ;

This expression represents that the precondition of starting a read action is “receiving
the message within 3 seconds.” Similarly, the expression:

commence drive(Anne, home, office) causes

in(Anne, office) within next 30minute;

represents that the effect of the actiondrive(Anne, home, office)is that Anne will be in
the office in 30 minutes.

To specify durations of actions inTeAL, we use expressions

duration Action d unit; (5)

To specify the initial state of a system, we use expressions

initially F ; (6)

whereF is a list of fluents and their negations (each of the expressions onF is required
to hold initially).

3 Translation from Natural Language Requirements

This section addresses prior work in translation as well as our proposed approach.

Prior Work. Our research is closely related to natural language understanding, a major
task in natural language processing (NLP) [22]. This task focuses on converting natural
language text into formal representations so that programscan handle them. Applica-
tions that accept natural language text as input often perform parsing of the text and
then represent the parsed text as a logic set. These logic sets can be processed and used
to assess the semantics of the text.

Our research concept is very similar to that ofCARL [9], an application that in-
tegrates natural language parsing techniques with defaultreasoning to identify incon-
sistencies in natural language requirements. The parsing task uses theCICO [8] algo-
rithm. The algorithm uses domain-based parsing; it allows analysts to define domain
specific rules for the parser.

Natural language processing toolkits such as Stanford parser [13, 7] andOpenNLP

library [3] support most of the commonNLP tasks, including chunking, parsing, speech
tagging, and tokenizing. It should be noted that the Stanford parser also extracts depen-
dencies, which are the grammatical relations between words. This type of information is
very useful for our research, the details will be given in theintroduction of our proposed
approach.

AnotherNLP task that is important to our research is Semantic Role Labeling
(SRL) [10]. TheSRL technique detects the semantic arguments of verbs or predicates
and the roles of these arguments. For example, given “a system updates data,” SRL

finds the verbupdatewith systemas its agent anddataas its object. TheSRL technique
proves to be very useful in extracting actions and fluents from natural language. Such
information is necessary for buildingTeAL theories.

Proposed Approach to Translation.We aim to create a semi-automated approach for
checking temporal consistency of requirements given in natural language. Our idea is
to translate the requirements into a theory in a low-level formal system, which can be
analyzed automatically. As mentioned earlier, the “distance” between natural language
and low-level formal methods is substantial. We propose to use an intermediate lan-
guage,TeAL, to bridge the gap. Thus, to translate text requirements into a low-level
formal system we needs to translate from text toTeAL. We present and study one such
method in this paper.

The method decomposes the task into four steps, presented below (Figure 1):

– Step 1: extract relevant requirements
– Step 2: identify system information

– Step 3: generateAlmostTeAL statements
– Step 4: build aTeAL theory that models the system

The first three steps are fully automated and generate a collection of AlmostTeAL

statements. The last step requires the involvement of an analyst whose task is to convert
AlmostTeAL statements toTeAL statements that correctly represent input require-
ments.

Fig. 1. Steps for Generating TeAL Statements

Step 1 (extract relevant requirements): Temporal requirements, such as “the system
updates data within 5 seconds after receiving the prediction data,” must be identified
and extracted from the collection of requirements. Most temporal requirements contain
keywords such as before and within, or patterns such as “do action every x seconds.” It is
viable to detect many, if not all, of the temporal requirements based on these keywords
and patterns. The technique described by Nikora [20] andNLP techniques [6] can be
used to address this task and have been incorporated into ourfront-end translator.

Given a set of temporal requirements, we also need to identify non-temporal require-
ments that are related to them and that might contain relevant system information. The
same techniques as listed above can be used here because typically these non-temporal
requirements share terms such as entity names with the temporal requirements (not tem-
poral ones that are already found). We employ these techniques in our tool. By the end
of this step, the tool has identified all requirements that are necessary for modeling the
system.

Step 2 (identify system information): Given a list of requirements found in Step 1,
several types of system elements must be identified: vocabulary and constraints.

The vocabulary consists of the names of objects of the systemand their proper-
ties. It also includes names of fluents and actions. Our front-end tool uses the seman-

tic role labeling (SRL) technique and Stanford Parser to assist in extracting the vo-
cabulary. As mentioned earlier,SRL finds actions and represents them as predicates
such as:update(system,data).Some fluents, such asreceived(Receiver,Msg,Sender), can
also be found in this way. However,SRL cannot detect any fluent from the text “sys-
tem is in safe mode,” while there is a fluentin(system,safeMode). Therefore, our tool
uses Stanford Parser to extract fluents such as this one. The parser generates a set of
typed dependencies for given texts. Each typed dependency represents a relationship
between two words. In this case, the useful dependencies are: nsubj (is , system) and
prep in(is ,mode). These two dependencies illustrate that the system is “in a mode,”
and this should be modeled as a fluent. Our tool also uses thesetyped dependencies to
decide the types of the semantic arguments. For example, with the typed dependency
prep to(sender , receiver), our tool decides that thesendaction has an argument whose
type issend to. Typed dependencies are useful because requirements oftenlack infor-
mation on all of the arguments. For example, given a requirement “if . . ., then the node
should send the message,” SRL will consider that the action send only has two argu-
ments: the node that sends, and the message being sent. But ifthere is another require-
ment with the typed dependencyprep to(sender , receiver), the tool can infer that the
sendaction has another argument, and the generated action will be:

send(node,message,)

When the tool generates a translation such as this, analystsare alerted that something is
missing.

Constraints can be temporal or non-temporal. Temporal constraints often contain
patterns for specifying temporal relationships among events. For example, “do action
within x seconds after” and “do action every x seconds” are patterns that are commonly
used in temporal requirements. These patterns can be represented by regular expressions
such as

(PP < ((IN < within)..(CD$ +NNS)))

for the within pattern. We use these regular expressions to extract the temporal con-
straints.

Additionally, we need to identify the relationships among actions, fluents, and tem-
poral events. For example, we need to find out if a fluent is the precondition or the effect
of an action, if two temporal relationships are disjunctivewith each other, or whether a
temporal relationship is a precondition or not. Our tool uses patterns and typed depen-
dencies mentioned above for this task. The useful dependencies areneg, conj or , and
conj and , which correspond to negation, disjunction, and conjunction. The patterns

(SBAR < ((IN < if)$ + S))

and

(SBAR < ((WHADVP < (WRB < when))$ + S))

are used for matching texts of the form “if something” or “ when something.” The tem-
poral relationships and fluents that are included in these texts will be marked as precon-
ditions. For example, given the following text: “If the node receives a command when it

is not in safe mode, it should report an error in 10 seconds,” our tool finds the following
information:receive(node,command)andreport(node,error)are actions,in(node, safe
mode)is a fluent, and

report(node, error) within next 10 seconds

is a temporal relationship. In addition, the tool establishes thatreceive(node,command)
and in(node, safe mode)are to be included in the precondition. Because there is no
evidence of negation and disjunction, they are assumed to beconjunctive with each
other by default. Besides, if there are other requirements that contain the information of
“ receive from somewhere,” the tool will update the action to:

receive(node, command,)

It should be noted that many non-temporal constraints are treated as “common
sense” or tacit knowledge, and they will not appear in the requirements. For exam-
ple, no requirement will specify that “a message cannot be received if it has not been
sent.” However, such common sense knowledge is necessary for modeling a system.
One possible way to further automate the identification of such unspecified information
is by using some kind of “common sense library.” A possible choice isConceptNet
[17], a commonsense knowledge base that focuses on physical, temporal, and social
aspects. It is also possible to use libraries that are domainspecific, such libraries should
cover the fundamental constraints in the domain.

Step 3 (identify system information): Our front-end tool builds “AlmostTeAL” state-
ments based on the information generated in Step 2. For instance, for each action, the
tool analyzes the information extracted in Step 2 to find thisaction’s possible effects and
preconditions, connect them with the conjunction or disjunction operator, and use them
to construct precondition and effect statements. The tool also analyzes related temporal
relationships to organize them into the “if . . . then. . .” expressions.

As mentioned above, some data may still be missing in the representation and some
data may be unspecified. Given the sample output of Step 2, ourtool generates:

if receive(node, command,) and in(node, safemode)

then report(node, error) within next 10 second;

Step 4 (build a TeAL theory that models the system): Analysts need to generateTeAL
statements based on the outputs of the front-end tool. More specifically, analysts need
to perform the following tasks:

– Read theAlmostTeAL statement to decide what it means.
– Compare theAlmostTeAL statement and its corresponding natural language and

generate a correctTeAL statement.

Given the sample output of Step 3, analysts need to remove allerrors in thatAlmostTeAL

statement and complete it to form aTeAL statement:

if terminate receive(node, command, somewhere) and in(node, safemode)

then terminate report(node, error) within next 10 second;

In this case the analysts need to specify whether the constraint concerns the time when
actions are commenced or when they are terminated. Also, analysts need to add the
arguments for the receive action: the entity the node receives messages from (here de-
noted bysomewhere). However, theAlmostTeAL statement is very close to theTeAL
statement we want to generate. And it is also close to naturallanguage text, so the
analyst’s task is manageable and ultimately may even be further automated.

4 Validation

This section addresses validation of the usefulness ofTeAL and of theAlmostTeAL

tool.

Research Questions.As mentioned earlier, our semi-automated method requires ana-
lysts’ involvement before correctTeAL theories are generated. This involvement takes
place in Step 4, as Steps 1 - 3 are fully automated in our front-end tool that generates
AlmostTeAL statements. OnceAlmostTeAL output is available, analysts must add
missing elements and remove inaccuracies in these statements so that a correctTeAL
theory can be passed to the fully automated step of translating into a low-level formal
system. The effectiveness and efficiency of this step greatly affects the effectiveness and
efficiency of the entire method and is the focus of this paper.

The accuracy of our front-end tool is critical, because it determines how many in-
accuracies an analyst needs to detect and correct in order togenerateTeAL statements.
Our tool is useful if analysts are more effective at generating TeAL with the help of
AlmostTeAL statements than they are without the aid ofAlmostTeAL statements. To
study the effectiveness and efficiency of Step 4, we posit thefollowing research ques-
tions:

– RQ1: Does the front-end produce outputs that improve the effectiveness of gener-
ating correctTeAL statements?

– RQ2: Does the front-end produce outputs that improve the efficiency of generating
correctTeAL statements?

RQ1 and RQ2 are important as they directly evaluate the quality of the method we
developed and implemented for generatingAlmostTeAL statements in an automated
way.

Dependent and Independent Variables.This study uses one independent variable:
Method(abbreviated asM)). There are two levels of this variable:TeAL, andTeAL
with the assistance ofAlmostTeAL.

RQ1 addresses the effectiveness of generatingTeAL statements. The dependent
variables (see TABLE II) that address RQ1 are: Precision (Prec1), Recall (Rec1),
and F-measure (F1) of predicates and temporal relationships (send, received, within
next 10 second); Precision (Prec2), Recall (Rec2), F-measure (F2) of arguments
(e.g.,node, message, serveras arguments ofsendandreceived), Translation Error Rate
(TER)[21], and Translation Difficulty Score (TDS).

The basic structure ofTeAL statements is represented by predicates (Pred) and
temporal relationships (Temp). Identifying predicates and temporal relationships is the

key component of our front-end tool because the basic structure ofTeAL statements is
represented by these two types of information. For instance, received within 10 seconds
after sendis intuitive, though it needs more detail to be a correctTeAL statement.

The measureRec1 is defined as the percentage of correctPred /Temp that are
written, while the measurePrec1 is the percentage of writtenPred /Temp that are
correct.

Rec1 =
of correct Pred/Temp written

of correct Pred/Temp

Prec1 =
of correct Pred/Temp written

of Pred/Temp written

The measureF1 is a harmonic mean ofPrec1 andRec1:

F1 =
2 ∗Prec1 ∗Rec1

Prec1+Rec1

The above formula puts equal importance to bothPrec1 andRec1.
Our tool also identifies arguments. Arguments are necessaryfor generating correct

TeAL statements. For instance, the example above needs the arguments ofsendand
received.

Similar to the measures above,Rec2 defines the percentage of correct arguments
that are written,Prec2 defines the percentage of written arguments that are correct,
andF2 is a harmonic mean ofPrec2 andRec2.

We also useTER to measure how close a generatedTeAL statement is to theTeAL
statement that correctly specifies the system. The measureTER is an error metric for
machine translation that measures the number of edits required to change a system
output into a target text:

TER =
of edits

average# of words in target text

where possible edits include the insertion, deletion, substitution of single words, and
shifts of word sequences. We convert eachTeAL statement into a sequence of words so
that we can use this measure. For instance, we will convert

received(node,msg, server)

within 10 second after terminate send(server,msg, node)

into: received node msg server within 10 second after terminate send server msg node
and then compare this sequence of words to the answer set to determine how many
insertions, deletions, can changes are required.

The measureTDS is a rating on a scale from 1 to 5 indicating the participants’
subjective opinion about the difficulty of translating fromnatural language toTeAL
with/withoutAlmostTeAL.
The dependent variable that address RQ2 is the average time (T) spent on each question.
The measureT, or Time, evaluates the efficiency of the method.

Table 1.Dependent Variables

Variable Abbr Scale
Predicate Precision Prec1 [0,1]

Predicate Recall Rec1 [0,1]
Predicate F measure F1 [0,1]
Argument Precision Prec2 [0,1]

Argument Recall Rec2 [0,1]
Argument F measure F2 [0,1]
Translation Error Rate TER [0,1]

Translation Difficulty ScoreTDS {1,2,3,4,5}
Time T time

Hypothesis. The null hypothesis for RQ1(H0RQ1) is that there is no difference in
the Prec1, Rec1, F1, Prec2, Rec2, F2, TER, andTDS betweenTeAL and
ATeAL. The alternative hypothesis (H1RQ1) is that there is a difference between the
two methods.

Similarly, the null hypothesis for RQ2 (H0RQ2) is that there is no difference in the
measureT of TeAL andATeAL. The alternative hypothesis (H1RQ2) is that there is
a difference.

Study Design.We conducted a study that evaluated effectiveness and efficiency with
and withoutAlmostTeAL. The study involved thirty four participants, all studentsin
computer science courses at the University of Kentucky. A pre-study questionnaire was
given to all the consenting (per IRB regulations) participants in order to gauge prior
experience and comfort with requirement analysis and formal languages. Additionally,
each participant received a ten minute introduction about the background of the ex-
periment. Participants were also given a fourteen minute training video and a training
document. The training video introduced the syntax and semantics ofTeAL. It focused
on the representation of actions, fluents, and temporal relationships. The video includes
AlmostTeAL as well. The training document covered everything in the video. The par-
ticipants were required to watch the video or read the document before the main study
task.

After the introduction, the main study assignment was administered. Each partici-
pant received a user ID. Each participant received a set of eight questions during the
main study task:

– Given a natural language requirement (with/withoutAlmostTeAL), write down its
correspondingTeAL statement.

We broke the participants into two groups based on their experience in requirements
and formal languages. We randomly divided the participantsof each experience level
into two groups of the same size. One group wroteTeAL statements with the help of
AlmostTeAL, another group did not haveAlmostTeAL statements.

Participants were asked to complete the tasks in the classroom. They were also
asked to record the time they spent on each question. After completing the main study
task, participants were asked to submit a hardcopy of the results and complete a post-
study questionnaire that asked for their reaction to requirement analysis and formal

languages. The study used examples from two datasets: 511 Regional Real-Time Transit
Information System Requirements (511phone) [2] and CM1 [1]. The 511phone dataset
presents the system requirements for the Bay Area 511 Regional Real-Time Transit
Information System (available open source). The requirements are primarily focused
on the performance of the 511 System and data transfers with the transit agencies.
The CM1 dataset is a requirement document produced by NASA for one of its science
instruments. The document was released by NASA for use by thesoftware engineering
research community.

Threats to Validity. Our study was subject to a number of threats to validity, mitigated
to the best of our ability. A threat to internal validity is the limited amount of time given
to the participants to learnTeAL. We were constrained by the amount of time available
in the class period. To address this, we separated the training session and the experiment
into separate sessions (separate consecutive class periods). This allowed the participants
more time to understandTeAL andAlmostTeAL by using the training video and doc-
ument. Another threat to internal validity is that we created answers for the questions
and used them as the golden answer set. Because we designedTeAL and have much ex-
perience in creatingTeAL statements from natural language requirements, the quality
of the golden answer set can be assured.

Our work with student participants represented a threat to external validity. How-
ever, these students all have at least three years of background in computer science and
they understand the concepts of software engineering and requirements engineering.
Their background allows them to perform small tasks of requirement analysis the same
as professionals with no significant differences [23]. Another threat to validity deals
with our use of two datasets. Though both 511phone and CM1 datasets are from real
projects, the study results may differ for different datasets in different domains. One
solution is repeating the experiment with other datasets from other domains. The third
threat to external validity is the motivation of the participants. Students were given ex-
tra credit to participate. This did not ensure that they answered all questions “seriously”
or thoughtfully. We noticed that two participants read the training document during the
experiment before they answered the questions. It is possible that they had not read it
before the experiment. This could affect the correctness oftheir answers and the time it
took for them to answer.

Dependent variable issues that threaten construct validity were reduced by the use
of standard measures. We address this validity threat by using different sets of mea-
sures: precision, recall, F-measure,TER, andTDS, to analyze different aspects of
”the effectiveness of generatingTeAL.” We usePrec1/Rec1/F1 to measure the ef-
fectiveness of identifying predicates and temporal relationships,Prec2/Rec2/F2 for
the effectiveness of identifying arguments,TER for the edits required from generated
TeAL statements to correct answers, andTDS for the subjective point of view from
participants. Another threat to construct validity is thatparticipants may have guessed
the research hypothesis, that is, they may have assumed thatAlmostTeALwas the focus
of the research with an aim to improve effectiveness and efficiency before they worked
on the main study assignment. We addressed this validity threat by not telling them that
TeAL andAlmostTeAL are our research areas.

5 Results

Table 2 presents the results of the study whether usingATeAL is more effective than
generatingTeAL expressions directly (RQ1) and whether usingATeAL is more effi-
cient than usingTeAL directly (RQ2).

Table 2.Mean values ofPrec1, Rec1, andF1, and ofPrec2, Rec2, andF2

Prec1 Rec1 F1 Prec2 Rec2 F2

TeAL 84.13%85.63%84.58%65.25%58.31%60.96%
ATeAL 89.39%89.28%89.11%84.89%83.28%83.97%

Specifically, Table 2 shows the mean values of precision (Prec1), recall (Rec1),
and F-measure (F1) for predicates and temporal relationships. WhenATeAL is used,
the results are better in all aspects than whenTeAL is used alone. However, the results
are very close in this part of the study. The values ofPrec1, Rec1, andF1 also
illustrate that participants performed well in capturing the general structure ofTeAL

statements, but the possibility of incorrect or missing predicates/temporal relationships
cannot be ignored, no matter what target language is used.

Table 2 also shows the mean values of precision (Prec2), recall (Rec2), and F-
measure (F2) for arguments. TheATeAL method is better thanTeAL for 20% in
precision and 25% in recall. The results show that it was muchmore difficult for the par-
ticipants to generate correct and complete arguments without the help ofAlmostTeAL.

Table 3.Mean values ofTER, TDS andT

TDS TDS T
TeAL 52.75% 3.38 282 sec
ATeAL 25.11% 4.33 167 sec

Table 3 shows the mean values ofTER, TDS and the mean values of timeT
spent on each question. The results show that the participants wrote betterTeAL with
the help ofAlmostTeAL statements: the number of edits required from the generated
TeAL statements to the correctTeAL was halved. The results onTDS illustrate that
the participants generally felt more comfortable and foundit easier to writeTeAL

statements withAlmostTeAL statements presented. Finally, participants reduced time
spent by 40% with the help ofAlmostTeAL statements.

6 Discussion

Based on the results above, it is clear that theAlmostTeAL statements generated by our
front-end tool improve the process of generatingTeAL statements in both effectiveness
and efficiency.

Figure 2 compares betweenTeAL andATeAL with regard to the objective mea-
sures concerning effectiveness:Prec1,Rec1,F1,Prec2,Rec2,F2, andTER.

Fig. 2. Results of Objective Measures

Though there were practical differences in thePrec1 andRec1 of our study, the
differences were not statistically significant. The highRec1 andPrec1 values (84%-
89%) show that one possibility is that these elements can be identified without the help
of AlmostTeAL. Yet the performance ofATeAL is still slightly better thanTeAL.

The results ofPrec2 andRec2 show that participants had a hard time in identify-
ing arguments withoutAlmostTeAL: they missed about 40% of arguments, while 35%
of the arguments they identified were incorrect. TheAlmostTeAL statements greatly
improved both precision and recall to 83%-84%. The differences in thePrec2 and
Rec2 measures are extremely significant. It appears thatAlmostTeAL finds more cor-
rect arguments than the participants. Additionally, the missing pieces inAlmostTeAL

can remind participants what information to look for when they read natural language
requirements. Participants also reduced time spent by 40% and halved their error rate
with the help ofAlmostTeAL statements. The differences in theTER andT mea-
sures are also extremely significant. The decrease ofTER, together with the increase
of Prec2 andRec2, proves the effectiveness ofATeAL.

Additionally, the feedback from participants proves that they preferATeAL to
TeAL. On the one hand, 56% of the participants thought it was difficult to writeTeAL
statements without any hints (TDS ≤ 3); on the other hand, 83% of the participants
felt the presence ofAlmostTeAL provides useful information (TDS ≥ 4).

Returning to the questions of interest, based on the study wefound that:

– RQ1: Yes. TheAlmostTeAL statements generated by the automated method help
analysts to produceTeAL with fewer errors. We can reject the null hypothesis in
favor of the alternative (H0RQ2).

– RQ2: Yes. TheAlmostTeAL statements generated by the automated method re-
duces the time needed for this process. We can reject the nullhypothesis in favor
of the alternative (H1RQ2).

7 Feedback

We get several comments from the post-study questionnaire aboutTeAL. There are pos-
itive comments such as:The syntax and order of arguments felt natural” and “TeAL

provides a consistent and precise structure for interpreting requirements and relation-
ships.There are also comments that point out problems, such as: “It was a little unclear
how much was always required to be strict about things,” “ it was hard to be certain
about if I was successfully stating things in perfectTeAL,” and “Sometimes I wasn’t
sure what words to use.” These comments remind us to further improve the effective-
ness of step 2 and step 3, as betterAlmostTeAL statements will solve/partially solve
these problems. Additionally, we are considering providing other information together
with AlmostTeAL, such as reminding analysts that certain parts of theAlmostTeAL

statements are incomplete, or presenting a list of possiblevalues for arguments.

8 Conclusion and Future Work

This work tackles a fundamental problem of requirements engineering. Requirements
are most often given as natural language text and so are proneto ambiguities, in-
completeness, and inconsistencies. To manually analyze requirements for correctness
is hard and error-prone itself. The solution is in automation of the process. However,
the distance between a natural language and a low-level formal one for which auto-
mated reasoning tools are available is large. We proposed tobridge the gap by means
of an intermediate-level formal languageTeAL. We use our translator tool to generates
expressions in “AlmostTeAL” that are close to the correct ones inTeAL so that we
can significantly ease the analyst task to produce final correctTeAL results. The effec-
tiveness of the proposed approach largely depends on the help thatAlmostTeAL can
provide. We performed an experiment to study this problem and provided evidence that
suggests that usingAlmostTeAL in the process of translation improved efficiency of
analysts and helps with accuracy.

We leaves several interesting questions for the future. First, we plan to enhance our
translator tool by developing modules of common (tacit) knowledge that we expect will
improve the accuracy of the translation process in Steps 1-3. Second, we are looking
for methods to demonstrate possible incompleteness and ambiguity in AlmostTeAL.
Finally, our experience with the front-end translator toAlmostTeAL demonstrates it
can be enhanced to provide analysts with feedback on obviousproblems with the re-
quirements (some entities never defined, missing terms, etc.). Thus, the quality of the
input requirements can be improved even before they are translated into low-level for-
malism for consistency analysis. We plan to explore this direction in depth.

Acknowledgment This work is funded in part by the National Science Foundation
grant CCF-0811140. This work was previously sponsored by NASA grant NNG05GQ58G.
We thank the anonymous participants. We thank Mark Hays for statistics assistance.

References

1. CM-1 Dataset PROMISE Website,http://promisedata.org/promised/trunk/
promisedata.org/data/cm1-maintain/cm1-maintain.txt, accessed:
2013-4-18

2. Regional real–time transit information system system requirements version
3.0 (2012), http://www.mtc.ca.gov/planning/tcip/Real-Time_
TransitSystemRequirements_v3.0.pdf, accessed: 2013-4-18

3. Baldridge, J.: The opennlp project. URL: http://opennlp. apache. org/index. html,(accessed
2 February 2012) (2005)

4. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Logic-based artificial
intelligence, pp. 257–279. Springer (2000)

5. Cimatti, A., Giunchiglia, E., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: Integrat-
ing bdd-based and sat-based symbolic model checking. In: Frontiers of Combining Systems,
pp. 49–56. Springer (2002)

6. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The detection and classification of non-
functional requirements with application to early aspects. In: Requirements Engineering,
14th IEEE International Conference. pp. 39–48. IEEE (2006)

7. De Marneffe, M.C., MacCartney, B., Manning, C.D., et al.:Generating typed dependency
parses from phrase structure parses. In: Proceedings of LREC. vol. 6, pp. 449–454 (2006)

8. Gervasi, V.: The cico domain-based parser (2001)
9. Gervasi, V., Zowghi, D.: Reasoning about inconsistencies in natural language requirements.

ACM Transactions on Software Engineering and Methodology (TOSEM) 14(3), 277–330
(2005)

10. Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational linguistics
28(3), 245–288 (2002)

11. Holzmann, G.J.: The model checker spin. IEEE Transactions on software engineering 23(5),
279–295 (1997)

12. Huth, M., Ryan, M.: Logic in Computer Science: Modellingand reasoning about systems.
Cambridge University Press (2004)

13. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the 41st An-
nual Meeting on Association for Computational Linguistics-Volume 1. pp. 423–430. Asso-
ciation for Computational Linguistics (2003)

14. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal on Software
Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

15. Li, W., Brown, D., Hayes, J.H., Truszczynski, M.: Answer-set programming in requirements
engineering. In: Requirements Engineering: Foundation for Software Quality, pp. 168–183.
Springer (2014)

16. Li, W., Hayes, J.H., Truszczyński, M.: Temporal actionlanguage (tal): a controlled lan-
guage for consistency checking of natural language temporal requirements. In: NASA For-
mal Methods, pp. 162–167. Springer (2012)

17. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of en-
glish: The penn treebank. Computational linguistics 19(2), 313–330 (1993)

18. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm, pp. 375–398.Springer (1999)

19. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

20. Nikora, A.P., Balcom, G.: Automated identification of ltl patterns in natural language require-
ments. In: Software Reliability Engineering, 2009. ISSRE’09. 20th International Symposium
on. pp. 185–194. IEEE (2009)

21. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit
rate with targeted human annotation. In: Proceedings of association for machine translation
in the Americas. pp. 223–231 (2006)

22. Spyns, P.: Natural language processing. Methods of information in medicine 35(4), 285–301
(1996)

23. Tichy, W.F., Padberg, F.: Empirical methods in softwareengineering research. In: Software
Engineering-Companion, 2007. ICSE 2007 Companion. 29th International Conference on.
pp. 163–164. IEEE (2007)

