Towards More Efficient Requirements Formalization: A
Study

Wenbin Li, Jane Huffman Hayes, and Miroslaw Truszczynski

Department of Computer Science, University of Kentuckyihgton, KY 40506-0633, USA
wenbi n. | i @ky. edu hayes, mi rek@s. uky. edu

Abstract. [Context and motivation] Validating natural language requirements
is an important but difficult task. Although there are tecjuss available for val-
idating formalized requirements, the gap between natargjuage requirements
and formalism is huggQuestion/problem] As part of a larger piece of work
on temporal requirements consistency checking, we degdl@pfront end to
semi-automatically translate natural language requirgsnmto an formal lan-
guage called Temporal Action Language BeA L. This work is based on an
underlying assumption that human analysts can assist uing fn the missing
pieces as we translate natural language temporal requitsrteeTeA L. [Prin-
cipal ideas/results]|We performed a study to validate this assumption. We found
that our front-end tool is more effective and efficient thananual proces$Con-
tribution] We present the design of our front-end and a study that mesisiie
performance of human analysts in formalizing requiremauitis the help of an
automated tool.

Keywords: formal specification, temporal requirements, translatiequirement
comprehension.

1 Introduction

Temporal requirements play an important role in the spextita, design, and devel-
opment of software systems. A mission-critical financiattng system requires that
certain transactions occur within a certain amount of tirhetber transactions (such
as posting the proceeds of a stock sale or logging realizédetid payments). An
e-commerce system requires that a payment be receivedtprgubmitting an order
for processing. A safety critical pacemaker system regunat pacing occur within
milliseconds of certain detected events.

As these examples suggest, errors in specifying, intengretr implementing tem-
poral requirements can lead to disastrous consequenaase lbr more requirements
related to the pacing of the heart are in conflict, a negagagtrevent might not trigger
a required life-saving pacing event. To address such issuesindertake consistency
checking of temporal requirements. This is a labor intemaivd tedious task, however.
Indeed, it is possible that a specification of a system constad many temporal re-
quirements (and related contextual requirements) thatriot possible to check them
manually. Hence we look to automation for assistance.

Many powerful formal languages and specification techrsdwa/e been offered to
support temporal consistency checking [5, 11, 14]. Norletise the main challenge for
the automation of temporal requirement consistency cingdkithat they are typically
represented as natural language text. There are sevesah=efor the use of text. Text
is highly expressive, there is little to no learning reqdite use it and, when carefully
used, natural textis precise and unambiguous. Yet, fullgraated processing of textual
requirements remains a distant goal. To take advantage @fatver of formal methods
in analyzing requirements specified in text, we need waysatstate the natural lan-
guage requirements into some formal language. Howeveny egempt to do so runs
into the question of whether the formal representationealy captures the intended
meaning of the natural language requirements.

To address this long-standing criticism of formal methots,have developed an
intermediate language to bridge the syntactically sigaifiggap between low-level for-
malisms and natural language temporal requirements: thpdial Action Language
(TeAL) [16]. We developed fully automated methods to translaid L to low-level
logic formalisms such as answer-set programmitg#) [18, 19] programs and linear
temporal logic (T'L) [12] theories (the translation is the subject of anothdnligation
[15]). That reduces the overall problem of consistency kimgcto that of producing
correctTeAL theories from the natural language representations ofdeshfand con-
textual) requirements, and brings up a key question: howl&aty, theories be created
more efficiently?

We introduce a semi-automated method that translatesatddunguage taleA L.
The efficiency of this method rests on the assumption thatmsean assist us during
the translation. We performed a study to validate this agsiom. We found that our
tool is more effective and efficient at the translation tdskta manual process.

This paper represents the first study to evaluate humanyatailassist with semi-
automated translation to a formal language. Measures usetthér fields such as for-
eign language translation have been applied in the studylir o gauge human ability
to assist withTeA L translation. The paper is organized as follows. Sectioneflipde-
scribes the formal representations studied. Section 3pte®ur approach to natural
language temporal requirement translation. Sections 4batisicuss validation and re-
sults, respectively. Section 7 and 8 analyze the resultsfafeedback we collected
from participants. Section 8 provides conclusions and & &iduture work.

2 Formal Representation of Temporal Requirements

Earlier, we introduced Temporal Action Languadée{ L) as a formal language for
supporting software requirement analysis [16]. Thel L language is an extension of
Action Languaged L [4], a language designed for modeling actions and theiceffend
for reasoning about ways in which a system can evolve.Td€L language retains all
the features ofi L and can also be used to specify temporal constraints. Bedausl,

is used to bridge the gap between natural language requitsraad low-level logic
formalism, we designed its syntax to be as close to naturgjuage as possible to
minimize analysts’ time and effort. We briefly describe tiietax below (see [16] for a
full description).

The basic components dfeA L are actions, fluents, and temporal conditions. Ac-
tions change the state of the system. They are performeddnytsag-or example, the
TeA L expressiorronnect(serA,nodeAgpresents an action to establish a connection to
nodeA serAis the agent that performs this action. Fluents representiat(boolean)
properties of the system. Complete and consistent setsoskify negated) fluents
describe the state of the system. For example, the fe@mected(serA,nodefgpre-
sents that the serveerAis connected to the nodeodeA Temporal conditions spec-
ify temporal relationships on times when events occur. Sau@nts include the start
and end of actions as well as the changes of system prop@ltiests). InTeAL, we
use two promptscommence Act andterminate Act, to represent the time when
action Act starts and successfully finishes. TaA L. one can also relate two consecu-
tive occurrences of the same action to each other. To disshdetween theni[eAL
provides the keywordprevious andnext, as in:commence previous Act and
terminate next Act. A fluent appearing in temporal conditions represents the ti
when this fluent becomes true. Similarly, the negation oferflin temporal conditions
represents the time when this fluent becomes false. Additigrwe view the start of
the system as a special evestiart Time represents when it happens.

Time moments represented by actions and fluents are codnlegteemporal re-
lationships. Given two time momentd, andt2, the basic relationship between them
can be: t1 before/after tZ or “t1 and t2 are at the same timieAdditionally, require-
ments may specify more information, such &k before t2 for some amount of tithe
TeAL provides eight keyword phrases to represent temporalagkitips. Most types
of temporal relationships specify both time moments expfias, for example, in the
expression

received(server, message,node) within 5 second after

terminate send(node, message, server)

which encodes the requiremetihé message is received by the server within 5 seconds
after it is sent by the nodeSuch elementary relationships between time points are
calledtemporal conditions

The keywordsand, or, andnot, as well as thdf ... then ... phrase, can be
used together with temporal conditions to represent thmitdan combinations, called
temporal constraintsThe specific form of a temporal constraint used’ir¥ L is

if Ay and ... and A, then By or ... or B,,; Q)

whereA; and ... and A, andB; or ... or B, are temporal conditions or their
negations. An example of a temporal constrainfa L is an expression:

if not commence print(server, message) within 5 second
after received(server, message, node)

then terminate send(server, alarm) within next 2 second,;

It captures the constraintf“a message is not printed within 5 seconds after it is re-
ceived, the server shall send an alarm within 2 secdnds.

As mentioned earlierTeAL is an extension ofl L, and it reuses the syntax dfL.
In particular, TeA L reuses the expressions of the following three forms:

State constraints L if P; (2
Dynamic causal laws a causes F if P;)
Executability conditions impossible prq,...,pr; if P; (4)
where F/, L, and P are lists of fluents and their negations gnd pry, ..., pr; are

prompts. Expression (2) captures the constraint that estatg satisfying” must also
satisfy L. For example, th&eA L expression

powerOn(computer) if running(computer);

says that if a computer is running, the power must be on. Espa (3) specifies the
immediate effects of prompts. It says that if prompptoccurs in a state satisfyirg,
thenE must hold in the next state. For example, thel L expression

terminate connect(serA, nodeA)

causes connected(nodeA, serA) if systemOn;

describes what will happen when the act@mnect(serA, nodeAipishes. Finally, ex-
pression (4) defines preconditions of prompts. It statesathl@ast one opry, ..., pri
must not occur i holds at this time moment. For example, theA L expression

impossible commence write(nodeA, serA)

if not connected(serA, nodeA);

specifies that the serveerAand the nodeodeAmust be connected (is the prerequisite)
for the actionwrite(nodeA, serAjo be executable.

The expressions above do not specify temporal informafled., supports a more
general version of these expressions by allowing fluenteteeplaced with temporal
conditions. This helps analysts to specify much more caraf#d preconditions and
effects such as in the followin@eA L expression:

impossible commence read(server, message)

if not received(server, message, node) within 3 second before ;

This expression represents that the precondition of stpdtiread action isréceiving
the message within 3 secoridSimilarly, the expression:

commence drive(Anne, home, office) causes

in(Anne, office) within next 30 minute;

represents that the effect of the actinive(Anne, home, offic& that Anne will be in
the office in 30 minutes.
To specify durations of actions iffeA L, we use expressions

duration Action d unit; (5)

To specify the initial state of a system, we use expressions
initially F; (6)

whereF is a list of fluents and their negations (each of the exprasaoF is required
to hold initially).

3 Translation from Natural Language Requirements

This section addresses prior work in translation as welllegpooposed approach.

Prior Work. Our research is closely related to natural language uratetistg, a major
task in natural language processitd/(P) [22]. This task focuses on converting natural
language text into formal representations so that progansandle them. Applica-
tions that accept natural language text as input often parfrarsing of the text and
then represent the parsed text as a logic set. These logicaebe processed and used
to assess the semantics of the text.

Our research concept is very similar to that@f R L [9], an application that in-
tegrates natural language parsing technigues with defeatoning to identify incon-
sistencies in natural language requirements. The paragiguses th&'/CO [8] algo-
rithm. The algorithm uses domain-based parsing; it allomalyests to define domain
specific rules for the parser.

Natural language processing toolkits such as StanforepEt3, 7] andOpenNLP
library [3] support most of the comma¥WL P tasks, including chunking, parsing, speech
tagging, and tokenizing. It should be noted that the Stahparser also extracts depen-
dencies, which are the grammatical relations between wtds type of information is
very useful for our research, the details will be given inititeoduction of our proposed
approach.

Another NLP task that is important to our research is Semantic Role liadpel
(SRL) [10]. The SRL technique detects the semantic arguments of verbs or jatedic
and the roles of these arguments. For example, gizesystem updates dataSRL
finds the verlupdatewith systenas its agent andataas its object. Thé&R L technique
proves to be very useful in extracting actions and fluentsfratural language. Such
information is necessary for buildingeA L theories.

Proposed Approach to Translation.We aim to create a semi-automated approach for
checking temporal consistency of requirements given innaatanguage. Our idea is
to translate the requirements into a theory in a low-levehia system, which can be
analyzed automatically. As mentioned earlier, tHestancé between natural language
and low-level formal methods is substantial. We proposest® an intermediate lan-
guage,TeAL, to bridge the gap. Thus, to translate text requirementsanbw-level
formal system we needs to translate from texftol L. We present and study one such
method in this paper.

The method decomposes the task into four steps, preserited (fégure 1):

— Step 1: extract relevant requirements
— Step 2: identify system information

— Step 3: generatd/mostTeA L statements
— Step 4: build aleA L theory that models the system

The first three steps are fully automated and generate actiolieof AlmostTeAL
statements. The last step requires the involvement of dgsinehose task is to convert
AlmostTeAL statements tdleAL statements that correctly represent input require-
ments.

‘ Extract Requirements Step 1

Step 2

Identify system
information

Automated g
r
%

Analysts involved Build TeAL statements | Step 4

Generate Almost TeAL | giep 3
statements

Fig. 1. Steps for Generating TeAL Statements

Step 1 (extract relevant requirements): Temporal requirements, such ahé system
updates data within 5 seconds after receiving the predictiata” must be identified
and extracted from the collection of requirements. Mosteral requirements contain
keywords such as before and within, or patterns suchdagacttion every x second# is
viable to detect many, if not all, of the temporal requiretsdrased on these keywords
and patterns. The technique described by Nikora [20] &A@ techniques [6] can be
used to address this task and have been incorporated infootiend translator.

Given a set of temporal requirements, we also need to igardifi-temporal require-
ments that are related to them and that might contain releyatem information. The
same techniques as listed above can be used here becagsdiythese non-temporal
requirements share terms such as entity names with the talmpquirements (not tem-
poral ones that are already found). We employ these tecasiiguour tool. By the end
of this step, the tool has identified all requirements thatregcessary for modeling the
system.

Step 2 (identify system information): Given a list of requirements found in Step 1,
several types of system elements must be identified: voaabahd constraints.

The vocabulary consists of the names of objects of the systaintheir proper-
ties. It also includes names of fluents and actions. Our feoit tool uses the seman-

tic role labeling GRL) technique and Stanford Parser to assist in extracting the v
cabulary. As mentioned earlieSR L finds actions and represents them as predicates
such asupdate(system,date§ome fluents, such asceived(Receiver,Msg,Sendegn
also be found in this way. Howeve$R L cannot detect any fluent from the texdys-
tem is in safe modéwhile there is a fluentn(system,safeMode}herefore, our tool
uses Stanford Parser to extract fluents such as this one.arkermgenerates a set of
typed dependencies for given texts. Each typed dependepcgsents a relationship
between two words. In this case, the useful dependencies.sugj(is, system) and
prep_in(is, mode). These two dependencies illustrate that the systermia fmnod¢’
and this should be modeled as a fluent. Our tool also usestyyese dependencies to
decide the types of the semantic arguments. For example tiéttyped dependency
prep_to(sender, receiver), our tool decides that treendaction has an argumentwhose
type issend_to. Typed dependencies are useful because requirementdadteimfor-
mation on all of the arguments. For example, given a requeretfif . . ., then the node
should send the message& R L will consider that the action send only has two argu-
ments: the node that sends, and the message being senttiBreiis another require-
ment with the typed dependengyep_to(sender, receiver), the tool can infer that the
sendaction has another argument, and the generated actionewill b

send(node, message,)

When the tool generates a translation such as this, analgstderted that something is
missing.

Constraints can be temporal or non-temporal. Temporaltcaings often contain
patterns for specifying temporal relationships among &dfor example,do action
within x seconds aftéand “do action every x secontiare patterns that are commonly
used in temporal requirements. These patterns can be egpeedy regular expressions
such as

(PP < ((IN < within)..(CD$ + NNS)))

for the within pattern. We use these regular expressionstraa the temporal con-
straints.

Additionally, we need to identify the relationships amomga@ns, fluents, and tem-
poral events. For example, we need to find out if a fluent is teegndition or the effect
of an action, if two temporal relationships are disjunctiith each other, or whether a
temporal relationship is a precondition or not. Our toolaugatterns and typed depen-
dencies mentioned above for this task. The useful depereteaeEneg, conj_or, and
conj_and, which correspond to negation, disjunction, and conjumcti he patterns

(SBAR < ((IN <if)$+5))
and
(SBAR < ((WHADVP < (WRB < when))$ + S))

are used for matching texts of the foriifi Something or “when somethingThe tem-
poral relationships and fluents that are included in theds till be marked as precon-
ditions. For example, given the following textf the node receives a command when it

is not in safe mode, it should report an error in 10 secohdsy tool finds the following
information:receive(node,commandhdreport(node,errorjare actionsin(node, safe
mode)is a fluent, and

report(node, error) within next 10 seconds

is a temporal relationship. In addition, the tool estaldsthatreceive(node,command)
andin(node, safe mode&re to be included in the precondition. Because there is no
evidence of negation and disjunction, they are assumed twbginctive with each
other by default. Besides, if there are other requireméatsdontain the information of
“receive from somewhetahe tool will update the action to:

receive(node, command, _)

It should be noted that many non-temporal constraints @atéd as common
sensé or tacit knowledge, and they will not appear in the requiesnts. For exam-
ple, no requirement will specify thag“message cannot be received if it has not been
sent” However, such common sense knowledge is necessary forlingde system.
One possible way to further automate the identification ohainspecified information
is by using some kind of¢common sense librafyA possible choice isConceptNet
[17], a commonsense knowledge base that focuses on phytsogioral, and social
aspects. Itis also possible to use libraries that are dospegcific, such libraries should
cover the fundamental constraints in the domain.

Step 3 (identify system information): Our front-end tool builds AlmostTeAL" state-
ments based on the information generated in Step 2. Fonicestéor each action, the
tool analyzes the information extracted in Step 2 to findadhtiton’s possible effects and
preconditions, connect them with the conjunction or disfion operator, and use them
to construct precondition and effect statements. The tsolanalyzes related temporal
relationships to organize them into thié . . then...” expressions.

As mentioned above, some data may still be missing in theseptation and some
data may be unspecified. Given the sample output of Step 200Lgenerates:

if receive(node, command, _) and in(node, sa femode)

then report(node, error) within next 10 second;

Step 4 (build a TeA L theory that modelsthe system): Analysts need to generafe AL
statements based on the outputs of the front-end tool. Mmeeifically, analysts need
to perform the following tasks:

— Read thedimostTeA L statement to decide what it means.
— Compare thedlmostTeAL statement and its corresponding natural language and
generate a correde A L statement.

Given the sample output of Step 3, analysts need to remosgaik in thatdlmost Te AL
statement and complete it to formlaA L statement:

if terminate receive(node, command, somewhere) and in(node, safemode)

then terminate report(node, error) within next 10 second;

In this case the analysts need to specify whether the camstancerns the time when
actions are commenced or when they are terminated. Alsdysasaneed to add the
arguments for the receive action: the entity the node resaivessages from (here de-
noted bysomewhere However, thedlmostTe A L statement is very close to tHeA L
statement we want to generate. And it is also close to nalangluage text, so the
analyst’s task is manageable and ultimately may even bleduautomated.

4 Validation

This section addresses validation of the usefulnestedf. and of theAlmostTeAL
tool.

Research QuestionsAs mentioned earlier, our semi-automated method requitas a
lysts’ involvement before correcteA L theories are generated. This involvement takes
place in Step 4, as Steps 1 - 3 are fully automated in our feadttool that generates
AlmostTeAL statements. OncdlmostTeAL output is available, analysts must add
missing elements and remove inaccuracies in these stateswthat a correcteAL
theory can be passed to the fully automated step of tranglatio a low-level formal
system. The effectiveness and efficiency of this step graéfticts the effectiveness and
efficiency of the entire method and is the focus of this paper.

The accuracy of our front-end tool is critical, because tedmines how many in-
accuracies an analyst needs to detect and correct in ordentratele A L statements.
Our tool is useful if analysts are more effective at genecpfieA L with the help of
AlmostTeAL statements than they are without the aidddfnost TeA L statements. To
study the effectiveness and efficiency of Step 4, we posifahewing research ques-
tions:

— RQ1: Does the front-end produce outputs that improve thecti¥eness of gener-
ating correctTeA L statements?

— RQ2: Does the front-end produce outputs that improve theiefity of generating
correctTeAL statements?

RQ1 and RQ2 are important as they directly evaluate the tyuafithe method we
developed and implemented for generatifityrost Te A L statements in an automated
way.

Dependent and Independent VariablesThis study uses one independent variable:
Method(abbreviated a$l)). There are two levels of this variabl&eAL, and TeAL
with the assistance oflmostTeAL.

RQ1 addresses the effectiveness of generafing L statements. The dependent
variables (see TABLE II) that address RQ1 are: PrecisBrecl), Recall Recl),
and F-measureF(1) of predicates and temporal relationshigsrfd, received, within
next 10 seconyl Precision Prec2), Recall Rec2), F-measureK2) of arguments
(e.g.,node, message, sernas arguments afendandreceived, Translation Error Rate
(TER)[21], and Translation Difficulty Scorél{DS).

The basic structure ofeAL statements is represented by predicates:d) and
temporal relationshipsifemp). Identifying predicates and temporal relationships & th

key component of our front-end tool because the basic streicf TeA L statements is
represented by these two types of information. For instareceived within 10 seconds
after sends intuitive, though it needs more detail to be a corréetl L statement.

The measurdRecl is defined as the percentage of corréeed/ Temp that are
written, while the measurPrec1 is the percentage of writteRred/ Temp that are
correct.

of correct Pred/Temp written

Recl =
ee # of correct Pred/Temp

of correct Pred/Temp written

Precl =
ree # of Pred/Temp written

The measurd'1 is a harmonic mean d?recl andRecl:

2 x Precl * Recl

F1 =
Precl + Recl

The above formula puts equal importance to Bitec1 andRecl.

Our tool also identifies arguments. Arguments are nece$sagenerating correct
TeAL statements. For instance, the example above needs the emtguiofsendand
received

Similar to the measures abovRec2 defines the percentage of correct arguments
that are writtenPrec2 defines the percentage of written arguments that are cprrect
andF2 is a harmonic mean dPrec2 andRec2.

We also us&’ER to measure how close a generafied! I statementis to thé&eA L
statement that correctly specifies the system. The med38iR is an error metric for
machine translation that measures the number of editsrejto change a system
output into a target text:

of edits

TER =
average # of words in target text

where possible edits include the insertion, deletion, Suiti®n of single words, and
shifts of word sequences. We convert edéhl L statement into a sequence of words so
that we can use this measure. For instance, we will convert

received(node, msg, server)

within 10 second after terminate send(server, msg, node)

into: received node msg server within 10 second after terminaie server msg node
and then compare this sequence of words to the answer seteloniige how many
insertions, deletions, can changes are required.

The measuré'DS is a rating on a scale from 1 to 5 indicating the participants’
subjective opinion about the difficulty of translating framatural language tdeAL
with/without AlmostTeAL.

The dependent variable that address RQ?2 is the averagelirapént on each question.
The measur&, or Time, evaluates the efficiency of the method.

Table 1. Dependent Variables

Variable Abbr Scale

Predicate Precision |Precl| [0,1]
Predicate Recall Recl [0,1]
Predicate F measure | F1 [0,1]
Argument Precision |Prec2| [0,1]
Argument Recall Rec2 [0,1]
Argument F measure | F2 [0,1]
Translation Error Rate | TER [0,1]

Translation Difficulty ScoreTDS |{1,2,3,4,3
Time T time

Hypothesis. The null hypothesis for RQHyrg1) is that there is no difference in
the Precl, Recl, F1, Prec2, Rec2, F2, TER, andTDS betweenTeAL and
ATeAL. The alternative hypothesigi(ro1) is that there is a difference between the
two methods.

Similarly, the null hypothesis for RQ2H,r2) is that there is no difference in the
measurd of TeAL andATeAL. The alternative hypothesigf(r2) is that there is
a difference.

Study Design.We conducted a study that evaluated effectiveness andeeitiziwith
and withoutAlmostTeAL. The study involved thirty four participants, all studeirts
computer science courses at the University of Kentucky.eAgtudy questionnaire was
given to all the consenting (per IRB regulations) particigain order to gauge prior
experience and comfort with requirement analysis and folamguages. Additionally,
each participant received a ten minute introduction abloathtackground of the ex-
periment. Participants were also given a fourteen minateitrg video and a training
document. The training video introduced the syntax and a@inseof TeA L. It focused
on the representation of actions, fluents, and tempordioa&hips. The video includes
AlmostTeAL as well. The training document covered everything in theweid'he par-
ticipants were required to watch the video or read the docdiimefore the main study
task.

After the introduction, the main study assignment was adstered. Each partici-
pant received a user ID. Each participant received a setgbit giuestions during the
main study task:

— Given a natural language requirement (with/withdiithost Te A L), write down its
correspondindleA L statement.

We broke the participants into two groups based on their ewpee in requirements
and formal languages. We randomly divided the participahtsach experience level
into two groups of the same size. One group wrdtel I statements with the help of
AlmostTeAL, another group did not havélmost TeA L statements.

Participants were asked to complete the tasks in the classrdhey were also
asked to record the time they spent on each question. Aftaptaging the main study
task, participants were asked to submit a hardcopy of thdtsemnd complete a post-
study questionnaire that asked for their reaction to reguént analysis and formal

languages. The study used examples from two datasets: fldriRéReal-Time Transit
Information System Requirements (511phone) [2] and CM1Thg 511phone dataset
presents the system requirements for the Bay Area 511 Ragiteal-Time Transit
Information System (available open source). The requirgsnare primarily focused
on the performance of the 511 System and data transfers hathransit agencies.
The CM1 dataset is a requirement document produced by NA8Are of its science
instruments. The document was released by NASA for use bgdfteare engineering
research community.

Threats to Validity. Our study was subject to a number of threats to validity,gattd

to the best of our ability. A threat to internal validity issthimited amount of time given

to the participants to learficA L. We were constrained by the amount of time available
in the class period. To address this, we separated thertgeeission and the experiment
into separate sessions (separate consecutive classgefibas allowed the participants
more time to understan@ieA L and AlmostTeA L by using the training video and doc-
ument. Another threat to internal validity is that we creladémswers for the questions
and used them as the golden answer set. Because we defighé@nd have much ex-
perience in creating’eA L statements from natural language requirements, the gualit
of the golden answer set can be assured.

Our work with student participants represented a threaktereal validity. How-
ever, these students all have at least three years of bagkajno computer science and
they understand the concepts of software engineering andregnents engineering.
Their background allows them to perform small tasks of rezraent analysis the same
as professionals with no significant differences [23]. Awmotthreat to validity deals
with our use of two datasets. Though both 511phone and CMdsdtt are from real
projects, the study results may differ for different datase different domains. One
solution is repeating the experiment with other datasets fother domains. The third
threat to external validity is the motivation of the paiants. Students were given ex-
tra credit to participate. This did not ensure that they aared all questionsseriously
or thoughtfully. We noticed that two participants read tfarting document during the
experiment before they answered the questions. It is pestiat they had not read it
before the experiment. This could affect the correctnedisedf answers and the time it
took for them to answer.

Dependent variable issues that threaten construct walidite reduced by the use
of standard measures. We address this validity threat bygudifferent sets of mea-
sures: precision, recall, F-measuigER, and TDS, to analyze different aspects of
"the effectiveness of generatinfeAL.” We usePrecl/Recl/F1 to measure the ef-
fectiveness of identifying predicates and temporal refeghips Prec2/Rec2/F2 for
the effectiveness of identifying argumer&ER for the edits required from generated
TeAL statements to correct answers, aRBDS for the subjective point of view from
participants. Another threat to construct validity is thatticipants may have guessed
the research hypothesis, that is, they may have assumedlithatt Te A L was the focus
of the research with an aim to improve effectiveness andeffity before they worked
on the main study assignment. We addressed this validigathoy not telling them that
TeAL and AlmostTeAL are our research areas.

5 Results

Table 2 presents the results of the study whether uAilig AL is more effective than
generatingle AL expressions directly (RQ1) and whether usikife AL is more effi-
cient than usingle AL directly (RQ2).

Table 2. Mean values oPrecl, Recl, andF1, and ofPrec2, Rec2, andF2

Precl| Recl| F1 |Prec2|Rec2| F2
TeAL |84.13%85.63%84.58%65.25%58.31%60.96%
ATeAL|89.39%89.28%89.11%84.89%83.28%83.97%

Specifically, Table 2 shows the mean values of precisiietl), recall Recl),
and F-measurdi1) for predicates and temporal relationships. WiaeRe AL is used,
the results are better in all aspects than witeA L is used alone. However, the results
are very close in this part of the study. The valuesPakcl, Recl, andF1 also
illustrate that participants performed well in capturihg general structure fe AL
statements, but the possibility of incorrect or missingdprates/temporal relationships
cannot be ignored, no matter what target language is used.

Table 2 also shows the mean values of precisPrec2), recall Rec2), and F-
measure ¥'2) for arguments. ThATe AL method is better thafe AL for 20% in
precision and 25% in recall. The results show that it was nmoete difficult for the par-
ticipants to generate correct and complete arguments utithe help ofAlmost TeA L.

Table 3. Mean values oTER, TDS andT

TDS |[TDS| T
TeAL |52.75% 3.38|282 se
ATeAL|25.11% 4.33 |167 se

LT

Table 3 shows the mean values BER, TDS and the mean values of tinie
spent on each question. The results show that the partisipante betteMe AL with
the help ofAlmostTeAL statements: the number of edits required from the generated
TeAL statements to the corré€e AL was halved. The results aRDS illustrate that
the participants generally felt more comfortable and foitnelsier to writeTe AL
statements wit/mostTe A L statements presented. Finally, participants reduced time
spent by 40% with the help oflmostTeA L statements.

6 Discussion

Based on the results above, it is clear thatdlieost Te A L statements generated by our
front-end tool improve the process of generatifigl L statements in both effectiveness
and efficiency.

Figure 2 compares betwedle AL and ATeAL with regard to the objective mea-
sures concerning effectivene$xecl,Recl,F1,Prec2,Rec2,F2, andTER.

100.00%

Fig. 2. Results of Objective Measures

Though there were practical differences in eec1 andRec1 of our study, the
differences were not statistically significant. The hiRbc1 andPrec1 values (84%-
89%) show that one possibility is that these elements cadésttified without the help
of AlmostTeAL. Yet the performance cATeAL is still slightly better thariCe AL.

The results oPrec2 andRec2 show that participants had a hard time in identify-
ing arguments withoutlimost Te A L: they missed about 40% of arguments, while 35%
of the arguments they identified were incorrect. Thiemost TeA L statements greatly
improved both precision and recall to 83%-84%. The diffeemnin thePrec2 and
Rec2 measures are extremely significant. It appearsAtiaiost Te A L finds more cor-
rect arguments than the participants. Additionally, thegimg pieces iMimostTeAL
can remind participants what information to look for wheaytliead natural language
requirements. Participants also reduced time spent by 4@¥talved their error rate
with the help of AlmostTe AL statements. The differences in tHEER and T mea-
sures are also extremely significant. The decrea8HiR, together with the increase
of Prec2 andRec2, proves the effectiveness &fTe A L.

Additionally, the feedback from participants proves thatyt preferATeAL to
TeAL. On the one hand, 56% of the participants thought it was diffio write TeAL
statements without any hintfDS < 3); on the other hand, 83% of the participants
felt the presence aflimost TeA L provides useful informatiorl{DS > 4).

Returning to the questions of interest, based on the studpwel that:

— RQ1: Yes. ThedlmostTeAL statements generated by the automated method help
analysts to produc&eA L with fewer errors. We can reject the null hypothesis in
favor of the alternativel{org2).

— RQ2: Yes. TheAlmostTeAL statements generated by the automated method re-
duces the time needed for this process. We can reject théaypdithesis in favor
of the alternative /1 r2).

7 Feedback

We get several comments from the post-study questionnainetdeA L. There are pos-
itive comments such ahe syntax and order of arguments felt natliahd “7TeAL

provides a consistent and precise structure for interpigtiequirements and relation-
ships.There are also comments that point out problems, suchtaga$ a little unclear
how much was always required to be strict about thihj&, was hard to be certain
about if | was successfully stating things in perf@etd L,” and “Sometimes | wasn'’t
sure what words to useThese comments remind us to further improve the effective-
ness of step 2 and step 3, as bettémostTeA L statements will solve/partially solve
these problems. Additionally, we are considering provgdather information together
with AlmostTeAL, such as reminding analysts that certain parts ofAheostTeAL
statements are incomplete, or presenting a list of posegélees for arguments.

8 Conclusion and Future Work

This work tackles a fundamental problem of requirementsrergging. Requirements
are most often given as natural language text and so are pooambiguities, in-
completeness, and inconsistencies. To manually analygereznents for correctness
is hard and error-prone itself. The solution is in automatd the process. However,
the distance between a natural language and a low-levelaloome for which auto-
mated reasoning tools are available is large. We proposbddge the gap by means
of an intermediate-level formal langua@eA L. We use our translator tool to generates
expressions in AlmostTeAL" that are close to the correct ones Tie AL so that we
can significantly ease the analyst task to produce final coffied L results. The effec-
tiveness of the proposed approach largely depends on thehalAlmostTeAL can
provide. We performed an experiment to study this probledaovided evidence that
suggests that usindimostTeAL in the process of translation improved efficiency of
analysts and helps with accuracy.

We leaves several interesting questions for the futurst,Rire plan to enhance our
translator tool by developing modules of common (tacit)lealge that we expect will
improve the accuracy of the translation process in StepsSe8ond, we are looking
for methods to demonstrate possible incompleteness andyaitynin AlmostTeAL.
Finally, our experience with the front-end translatorAbnostTeA L demonstrates it
can be enhanced to provide analysts with feedback on obpimidems with the re-
quirements (some entities never defined, missing termg, &twus, the quality of the
input requirements can be improved even before they arslétaa into low-level for-
malism for consistency analysis. We plan to explore thisalion in depth.

Acknowledgment This work is funded in part by the National Science Foundatio
grant CCF-0811140. This work was previously sponsored bgAgrant NNG0O5GQ58G.
We thank the anonymous participants. We thank Mark Haystédisics assistance.

References

1. CM-1 Dataset PROMISE Website, t p: / / promi sedat a. or g/ promi sed/ t r unk/
proni sedat a. or g/ dat a/ cml- nai nt ai n/ cml- mai nt ai n. t xt, accessed:
2013-4-18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Regional real-time ftransit information system systemquirements version

3.0 (2012), http://ww. ntc.ca.gov/planning/tcip/Real -Tinme_
Transit Syst enRequi renent s_v3. 0. pdf , accessed: 2013-4-18

. Baldridge, J.: The opennlp project. URL: http://openmpache. org/index. html,(accessed

2 February 2012) (2005)

. Baral, C., Gelfond, M.: Reasoning agents in dynamic domadn: Logic-based artificial

intelligence, pp. 257—-279. Springer (2000)

. Cimatti, A., Giunchiglia, E., Pistore, M., Roveri, M., l&&stiani, R., Tacchella, A.: Integrat-

ing bdd-based and sat-based symbolic model checking. dmtiers of Combining Systems,
pp. 49-56. Springer (2002)

. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Thesdédn and classification of non-

functional requirements with application to early aspetits Requirements Engineering,
14th IEEE International Conference. pp. 39-48. IEEE (2006)

. De Marneffe, M.C., MacCartney, B., Manning, C.D., et @enerating typed dependency

parses from phrase structure parses. In: Proceedings oELRiE 6, pp. 449-454 (2006)

. Gervasi, V.: The cico domain-based parser (2001)
. Gervasi, V., Zowghi, D.: Reasoning about inconsistengienatural language requirements.

ACM Transactions on Software Engineering and MethodoloB®EM) 14(3), 277-330
(2005)

Gildea, D., Jurafsky, D.: Automatic labeling of semantles. Computational linguistics
28(3), 245-288 (2002)

Holzmann, G.J.: The model checker spin. IEEE Transastim software engineering 23(5),
279-295 (1997)

Huth, M., Ryan, M.: Logic in Computer Science: Modelliagd reasoning about systems.
Cambridge University Press (2004)

Klein, D., Manning, C.D.: Accurate unlexicalized pacgsiIn: Proceedings of the 41st An-
nual Meeting on Association for Computational Linguistiédume 1. pp. 423—-430. Asso-
ciation for Computational Linguistics (2003)

Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshekrnational Journal on Software
Tools for Technology Transfer (STTT) 1(1), 134-152 (1997)

Li, W., Brown, D., Hayes, J.H., Truszczynski, M.: Ansveat programming in requirements
engineering. In: Requirements Engineering: Foundatiorstdtware Quality, pp. 168—183.
Springer (2014)

Li, W., Hayes, J.H., Truszczyhski, M.: Temporal actianguage (tal): a controlled lan-
guage for consistency checking of natural language terhpegairements. In: NASA For-
mal Methods, pp. 162—-167. Springer (2012)

Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Bdihg a large annotated corpus of en-
glish: The penn treebank. Computational linguistics 19828330 (1993)

Marek, V.W., Truszczyhski, M.: Stable models and areratitive logic programming
paradigm. In: The Logic Programming Paradigm, pp. 375-3@8inger (1999)

Niemeld, I.: Logic programs with stable model semants a constraint programming
paradigm. Annals of Mathematics and Atrtificial Intelliger25(3-4), 241-273 (1999)
Nikora, A.P., Balcom, G.: Automated identification dplatterns in natural language require-
ments. In: Software Reliability Engineering, 2009. ISSBE20th International Symposium
on. pp. 185-194. IEEE (2009)

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., MaklipJ.: A study of translation edit
rate with targeted human annotation. In: Proceedings afcéstson for machine translation
in the Americas. pp. 223-231 (2006)

Spyns, P.: Natural language processing. Methods afrireftion in medicine 35(4), 285-301
(1996)

23. Tichy, W.F., Padberg, F.: Empirical methods in softwemgineering research. In: Software
Engineering-Companion, 2007. ICSE 2007 Companion. 2%#rrational Conference on.
pp. 163-164. IEEE (2007)

