
A Semantic Model of Program Faults

A. Je�erson O�utt
George Mason University

J. Hu�man Hayes
Science Applications International Corp.

Abstract

Program faults are artifacts that are widely studied, but

there are many aspects of faults that we still do not un-

derstand. In addition to the simple fact that one impor-

tant goal during testing is to cause failures and thereby

detect faults, a full understanding of the characteristics

of faults is crucial to several research areas in testing.

These include fault-based testing, testability, mutation

testing, and the comparative evaluation of testing strate-

gies. In this workshop paper, we explore the fundamen-

tal nature of faults by looking at the di�erences between

a syntactic and semantic characterization of faults. We

o�er de�nitions of these characteristics and explore the

di�erentiation. Speci�cally, we discuss the concept of

\size" of program faults { the measurement of size pro-

vides interesting and useful distinctions between the syn-

tactic and semantic characterization of faults. We use

the fault size observations to make several predictions

about testing and present preliminary data that supports

this model. We also use the model to o�er explanations

about several questions that have intrigued testing re-

searchers.

1 INTRODUCTION

Many testing techniques and activities revolve around
program faults. We often view testing as a process of
trying to cause failures, thereby uncovering faults in
the software. Many testing techniques are speci�cally
designed to identify faults, and we often evaluate test-
ing techniques on the basis of their ability to detect
faults. Fault-based adequacy criteria [4, 7, 11] measure
the quality of a test set according to its e�ectiveness or
ability to detect certain types of faults. Error seeding

Supported by the National Science Foundation under grant CCR-
93-11967. First author's address: ISSE Department, 4A4, Fairfax, VA

22030-4444, phone: 703-993-1654, email: ofut@isse.gmu.edu. Second
author's address: 1213 Je�erson Davis Highway, Suite 1300, Arling-
ton, VA 22202, email: hayes@cg4.saic.com.

[8, 10, 16] is a technique for estimating the number of
faults in the software. Arti�cial faults are seeded into
the program, and the testing is evaluated based on the
number of seeded faults found.

The same criticism has been levied against both
fault-based testing and error seeding: the arti�cial faults
are not necessarily representative of natural faults. The
accuracy of the evaluation during error seeding and the
e�cacy of fault-based techniques depend on the actual
faults. Although it is possible to avoid this problem by
using natural faults, this option is expensive and di�-
cult to automate, and makes it di�cult to impose proper
empirical controls.

In this paper, we argue that these problems, and
others, can be better understood and at least partially
solved by looking at a syntactic and semantic charac-
terization of faults. Although this is not the �rst time
faults have been viewed in this way, we present a con-
ceptual model and attempt to explore its rami�cations.
In the rest of the paper, we develop these ideas, discuss
several implications of this characterization, and present
data that support the model.

2 THE SEMANTIC AND SYNTAC-

TIC MODEL OF FAULTS

The IEEE standard de�nition of an error is a mistake
made by a developer [1]. An error may lead to one or
more faults. Faults are located in the text of the pro-
gram. A fault is the di�erence between the incorrect
program and some correct program. Note that a fault
may be localized in one statement or may be textually
dispersed into several locations in the program. Simi-
larly, a fault may be repairable in many ways { that is,
there may be many ways to correct a fault, each one
leading to a correct, but di�erent program.

This de�nition is in terms of the syntactic nature of
a fault. If the fault is being inserted into the program,
then the syntactic nature of the fault is described by the
changes to the program. If the fault occurs naturally in
the program, then the syntactic nature of the fault is
described by the number of changes needed to correct
the program. Examples of syntactic characterizations
of faults include using an incorrect variable name, or
checking to see if a called function fails. These are of-
ten things that programmers do by mistake { typos, or

reading a design incorrectly.
A fault can also be characterized semantically. Each

program P can be viewed as having a speci�cation S
that de�nes sets D (the input domain) and R (the out-

put range), and a mapping from D to R (D
S
�! R).

The program may compute results on a superset of D,
or if the input is not in D, P may produce output that
is not in R (unde�ned).

A semantic characterization of a fault views the
faulty program as containing a computation that pro-
duces incorrect output over some subset of the input
domain. That is, the mapping of inputs to outputs

(D
P
�! R) is incorrect (D

P
�! R 6= D

S
�! R) for some

subset of D.
What this characterization really does is give us dif-

ferent ways to look at a fault. A given fault has a
syntactic aspect and a semantic aspect. This charac-
terization is not particularly new or profound, nor is it
particularly useful by itself. But this characterization
illuminates some interesting aspects of faults when we
consider the size of a fault. Generally, we say the size of
a fault is the scope of the di�erence between a correct
and incorrect version of the program.

We initially de�ne the syntactic size of a fault to
be the number of statements or tokens that need to be
changed to get a correct program1. This de�nition suf-
fers from the problem that there may be many correct
versions of the program; thus we re�ne the syntactic size
to be the fewest number of statements or tokens that
need to be changed. Note that this does not necessarily
provide the \best" �x to the program in any sense. We
de�ne the semantic size of a fault to be the relative size
of the subdomain of D for which the output mapping is
incorrect. Although the semantic size would ideally be
based on a usage distribution that assigns a non-uniform
probability to each input, it could be approximated by
considering a uniform domain with each input having
an equal probability of occurring, or by using some set
of inputs generated for testing purposes. When we con-
sider size, the syntactic and semantic characterizations
of faults are very di�erent.

Consider very \small" faults. For a syntactically
small fault, one token or one statement may be incor-
rect. For a semantically small fault, P 's behavior on a
very small portion ofD is incorrect. Clearly, a fault that
is syntactically small can result in a fault that is very
large semantically { that is, the syntactic fault can a�ect
arbitrarily many inputs. Also, a major syntactic fault
in P may a�ect only a few inputs. And of course, there
is some intersection where small semantic faults can be
modeled as small syntactic faults, and small syntactic
faults can result in small semantic faults.

1Note that there are many ways to de�ne the syntactic size, many
based on the program representation. We choose this de�nition be-

cause it is reasonable and useful { we do not claim that it is the \best"
way to de�ne syntactic size.

As an example, consider the program fragment:

for i := 1 to n do

B[i] := B[i]-1;

Suppose this program fragment contains the very small
syntactic fault that the subtraction operator should
have been addition. Although this is small syntactically,
the fault will not only a�ect every input to the program,
it will a�ect every element of B for every input, thus the
fault is semantically very large.

As another example, consider the calculation of the
mean versus the median of a list of numbers. Although
the computation for the mean is very di�erent syntacti-
cally from the computation of the median, there are
many lists of numbers for which the mean and me-
dian are the same. Thus, making the wrong calculation
would be syntactically large, but semantically small.

Finally, consider a program containing the very
small syntactic fault that the >= operator should have
been strictly >. This small syntactic fault will result in
a fault that is also semantically small.

3 IMPLICATIONS

By considering this semantic model, and speci�cally the
semantic size of faults, we can gain insight into a number
of testing issues. The central issue is that much of the
fault-based research has focused on faults that are small
syntactically, without consideration of the semantic size.

In the following subsections, we discuss how this model
relates to several issues in testing.

3.1 Fault Seeding

Fault seeding refers to arti�cially introducing faults into
programs, usually to measure the quality of testing or to
empirically compare testing strategies. When we seed
faults into programs we often seed syntactically small
faults { they are simpler to de�ne and manage. A more
e�ective consideration would be the semantic size. If we
insert a large semantic fault, then the fault is easy to
detect via testing. Thus, if we are measuring the quality
of testing, we are biasing our results toward the testing
strategy, and if we are comparing two testing strategies,
we will be less likely to detect any di�erence.

On the other hand, faults that are too small seman-
tically will have the opposite e�ect. If we are measuring
the quality of testing, we are biasing our results against
the testing strategy, and if we are comparing two testing
strategies, neither will be likely to work very well.

Hamlet [6] pointed out that most empirical compar-
isons of testing techniques have two problems: a partic-
ular collection of programs must be used; and a partic-
ular set of test data must be created. Both of these are
examples of internal controls on the empirical process

and are the sorts of problems that are always present in
any experiment. Internal control problems mean that
the results of the experiment may not scale up and be
true in all situations. We suggest that another potential
problem is that if the techniques are compared based on
the faults they �nd, a particular collection of faults must
be used.

Studies using fault seeding have been questioned on
the basis of whether the faults were \realistic" or \rep-
resentative". Unfortunately, we do not know what a
realistic, arti�cial fault is. Although a few studies have
successfully used naturally occurring faults, this neces-
sitates an expensive case study approach that is di�-
cult to control scienti�cally. Based on the size model
presented in this paper, we can reasonably consider a
collection of faults to be \realistic" if they have a dis-
tribution of semantic sizes that is similar to that of real
faults. Of course, we have little data about distributions
of semantic fault sizes for naturally occurring faults, but
this is something that can be measured relatively eas-
ily. A collection of arti�cially seeded faults can then be
validated by measuring their semantic size. We suggest
three ways to approximately measure the distribution
of semantic sizes of seeded faults.

� Take the test cases that were used in the study
and count how many test cases �nd each fault.

� Generate many random test cases and count how
many test cases �nd each fault.

� Obtain inputs following a usage pro�le and count
how many test cases �nd each fault.

If this approach succeeds, we could develop reasonable
estimations of the semantic size of realistic faults. This
could then be used to create a data base of programs
that have arti�cial, but representative, faults.

3.2 Mutation Operators

Budd [2] discussed the concept of program neighbor-
hoods. A neighborhood of a program P is a set of pro-
grams that are \close" to P . The program neighbor-
hood concept was used to present the competent pro-
grammer hypothesis [4], which states that competent
programmers produce programs that are \close" to be-
ing correct. This was in turn used to justify the oper-
ators that are used in mutation testing { the operators
should create mutants that are in the neighborhood of
the original program.

In testing classes, this topic consistently generates
the question of whether the neighborhood should be se-
mantically close or syntactically close. Budd's descrip-
tion was in terms of semantic neighborhoods, and De-
Millo, Lipton, and Sayward's description was in terms
of syntax. Discussions with the original researchers

revealed that they really wanted changes in the pro-
gram's functionality, and settled for changes in the text.
Although mutation systems create mutants that are
small syntactically, semantically small mutants would
be harder to kill, thus have the potential to lead to
higher quality tests. Mutants that are small syntacti-
cally but large semantically only generate noise; they
add di�culty to the mutation process without increas-
ing the testing value of the resulting test cases. This is
evidenced by the fact that many mutants are trivially
killed by almost any test case that reaches the mutated
statement, and less directly because there appears to be
a large amount of overlap in the mutants in the sense
that a test case that kills one mutant will invariably kill
many others.

Of course one of the problems with mutation testing
has always been that of equivalent mutants { mutants
that have no functional e�ect on the program and thus
cannot be killed. In terms of the semantic characteristic
of a fault, an equivalent mutant represents a fault whose
semantic size is zero.

Considering the semantic size of mutants also relates
to several other questions that have been troubling mu-
tation researchers.

1. Why does there intuitively seem to be a close
correlation between killing \hard-to-kill" mutants
and detecting equivalent mutants? With the se-
mantic size model, the answer to this question be-
comes obvious. Hard-to-kill mutants are mutants
with very small semantic faults { and equivalent
mutants have semantic fault size zero. Thus they
are related because their semantic sizes are almost
the same. From a testing perspective, it can be
argued that semantically small mutants are more
desirable { they lead to stronger test cases.

2. Why does selective mutation work? Selective mu-
tation [14, 15] is an approximation technique that
selects only mutants that are truly distinct from
other mutants. Recent results have shown that

of the 22 mutation operators used by the Mothra
mutation testing system [3], test data generated to
kill mutants produced by �ve operators are su�-
cient to kill mutants produced by the other oper-
ators.

By considering the semantic model of faults, we
can theorize that selective mutation is trying to
use only operators that tend to produce mutants
that have semantically small faults. If this theory
is correct, the operators that work well empiri-
cally should produce mutants that are, on aver-
age, small semantically. One easily checked corol-
lary to this theory is that selective mutants should
contain a relatively high percentage of equivalent
mutants. Of course it is unfortunate that if we

successfully create mutants with smaller seman-
tic size, then we also make the equivalent mutant
problem worse.

3. Why does the coupling e�ect hold? The coupling
e�ect says that complex faults are coupled to sim-
ple faults in such a way that test data that de-
tects all simple faults in a program will detect
most complex faults [4]. The coupling e�ect has
been supported experimentally in a study that
compared test sets generated for mutants that in-
volved changes in two places with test sets gen-
erated for single change mutants [12], and shown
to hold probabilistically for large classes of pro-
grams [18]. Unfortunately, the coupling e�ect has
not been adequately explained on an intuitive ba-
sis. Although this is speculative, it seems that the
semantic model might at least partially explain
the coupling e�ect. In the empirical study, simple
faults were modeled as single change mutants, and
complex faults were modeled as multiple change
mutants. Thus, we could characterize the multi-
ple change mutants as being syntactically larger
than the single change mutants.

There are two reasonable interpretations of the
coupling e�ect within the semantic fault model.
One is that as faults get larger syntactically, there
is a tendency for the faults to also get larger se-
mantically. If this is true, then faults that are
larger syntactically will tend to be easier to �nd
via testing, because they will fail on larger por-
tions of the input space.

A second interpretation that we believe is more
likely is that there is a true relationship between
syntactically small faults and semantically large
faults. We can consider the failure region for a
fault to be the portion of the input space that
causes the fault to result in a failure. It might
be the case that for every semantically large fault,

there are one or more syntactically small faults
such that there is a large overlap in the two faults'
failure regions. In this case, we can expect the two
faults to be coupled in the traditional sense.

This discussion brings out a key di�erence between
fault seeding and mutation analysis. When doing fault
seeding, we want faults that approximate natural faults
as closely as possible { in our terms, by exhibiting a dis-
tribution of semantic fault sizes that matches the distri-
bution of natural faults. Mutation, however, may not
want a similar distribution of semantic fault size. Us-
ing faults that have smaller semantic size may lead to
stronger testing.

3.3 Testability

Testability is a software metric that quanti�es how di�-
cult it is to test software. This \level of di�culty" could
include the cost to generate test cases, write drivers or
stubs, or determine correctness for a speci�c test case.
The PIE assessment method for measuring testability
[17] is based on the following testability de�nition: the
probability that faults will result in observable failures
for a given input distribution or test scheme. PIE im-
plements this de�nition by computing three measure-
ments: execution, which estimates the probability that
a faulty statement will be reached; infection, which pre-
dicts the probability that a fault on a given statement
will cause the dynamic data state of the program to
become corrupted; and propagation, which predicts the
probability that a corrupted data state will propagate
through the execution stream to cause a corrupted out-
put. These three probability estimates can be combined
to gain overall predictions of the testability of state-
ments, units, and programs.

The testability of a program is closely related to the
semantic model. If a statement in a program has very
low testability, we expect that faults associated with
that statement will be small semantically. Likewise, if
\existing" faults associated with a given statement are
semantically large, we expect the statement to exhibit
high testability.

True testability depends on faults, the code, and the
test distribution. Our predictions of this unknown en-
tity depend partially on simulated faults; the infection
probability is measured by using mutation-like changes.
In-depth understanding of representative faults could
improve the infection probability estimate, thus increas-
ing the validity of the testability estimates. This knowl-
edge could also give us a more accurate knowledge of
the bene�t of testing, leading to more e�ective use of
the measurements to complement software testing.

3.4 Impact Analysis

Goradia [5] has suggested a technique called impact
analysis that estimates, for a given test case and state-
ment, the \impact" that statement has on the output of
the program. We suggest that this is related to the se-
mantic model in the following sense. If a statement has
a large impact on the program's output when averaged
over a number of test cases, then faults that appear on
or partially on that statement will tend to have a large
semantic size.

4 EVALUATION

The model we are presenting in this paper is a concep-
tual tool and does not provide new testing techniques or
directly provide new results about existing techniques.

Rather, it is a way of thinking about problems of exist-
ing testing techniques that may lead to new insights and
solutions to those problems. In this section, we provide
data from preliminary investigations into some of those
problems, using the semantic model as a basis.

4.1 Equivalent Mutant Clusterings

As stated in Section 3.2, selective mutation tries to se-
lect only mutants that are truly distinct from other mu-
tants. Results [14] have indicated that not all of the 22
mutation operators used by the Mothra mutation sys-
tem are necessary; it has been found that test data that
kill all mutants created by only �ve of the operators will
usually kill almost all of the mutants created by all 22
operators. In terms of the semantic fault model, selec-
tive m

of Faults % of Test Cases

15 80 { 100%
14 20 { 52 %
26 .9% { 10%

Table 1: Summary of Fault Size Data

References

[1] IEEE Standard Glossary of Software Engineering

Terminology. ANSI/IEEE Std 729-1983, 1983.

[2] T. A. Budd and D. Angluin. Two notions of cor-
rectness and their relation to testing. Acta Infor-

matica, 18(1):31{45, November 1982.

[3] R. A. DeMillo, D. S. Guindi, K. N. King, W. M.
McCracken, and A. J. O�utt. An extended
overview of the Mothra software testing environ-
ment. In Proceedings of the Second Workshop on

Software Testing, Veri�cation, and Analysis, pages
142{151, Ban� Alberta, July 1988. IEEE Com-
puter Society Press.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34{41, April
1978.

[5] T. Goradia. Dynamic impact analysis: A cost-
e�ective technique to enforce error-propagation. In
Proceedings of the 1993 International Symposium

on Software Testing, and Analysis, pages 171{181,
Cambridge MA, June 1993.

[6] D. Hamlet. Theoretical comparisons of testing
methods. In Proceedings of the Third Symposium

on Software Testing, Analysis, and Veri�cation,
pages 28{37, Key West Florida, December 1989.
ACM SIGSOFT 89.

[7] R. G. Hamlet. Testing programs with the aid of
a compiler. IEEE Transactions on Software Engi-

neering, 3(4), July 1977.

[8] J. Knight and P. Ammann. An experimental evalu-
ation of simple methods for seeding program errors.
In Proceedings of the Eighth International Confer-

ence on Software Engineering, pages 337{342, Lon-
don UK, August 1985. IEEE Computer Society.

[9] S. Meyers. E�ective C++: 50 Speci�c Ways to Im-

prove Your Programs and Designs. Addison-Wesley
Publishing Company Inc., 1992.

[10] H. D. Mills. On the statistical validation of com-
puter programs. Technical report FSC 72-6015,
IBM, 1972.

[11] L. J. Morell. A theory of fault-based testing. IEEE
Transactions on Software Engineering, 16(8):844{
857, August 1990.

[12] A. J. O�utt. Investigations of the software test-
ing coupling e�ect. ACM Transactions on Software

Engineering Methodology, 1(1):3{18, January 1992.

[13] A. J. O�utt and A. Irvine. Testing object-oriented
software using the category-partition method. In
Seventeenth International Conference on Technol-

ogy of Object-Oriented Languages and Systems

(TOOLS USA '95), pages 293{303, Santa Barbara,
CA, August 1995.

[14] A. J. O�utt, A. Lee, G. Rothermel, R. Untch, and
C. Zapf. Interprocedural static analysis of sequenc-
ing constraints. ACM Transactions on Software

Engineering Methodology. to appear.

[15] A. J. O�utt, G. Rothermel, and C. Zapf. An experi-
mental evaluation of selective mutation. In Proceed-
ings of the Fifteenth International Conference on

Software Engineering, pages 100{107, Baltimore,

MD, May 1993. IEEE Computer Society Press.

[16] K. Tewary and M. J. Harrold. Fault modeling us-
ing the program dependence graph. In Proceedings

of the Fifth International Symposium on Software

Reliability Engineering, pages 126{135, Monterey
CA, November 1994.

[17] J. M. Voas, L. Morell, and K. W. Miller. Predicting
where faults can hide from testing. IEEE Software,
8(2), March 1991.

[18] K. S. H. T. Wah. Fault coupling in �nite bijective
functions. The Journal of Software Testing, Veri-

�cation, and Reliability, 5(1):3{47, March 1995.

