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ABSTRACT 
This paper posits that a theoretical model of analyst effort in 

tracing tasks is necessary to assist with study of the analyst.  

Specifically, it is clear from prior work by numerous research 

groups that the important factors in such a model are: the amount 

of time it takes for an analyst to vet a given candidate link and the 

amount of time it takes an analyst to find a missing link. This 

paper introduces a theoretical model of analyst effort as well as a 

simplified model. A number of simulations were undertaken in 

order to build effort curves to assist in evaluating numerous 

tracing scenarios, such as determining at what point in time an 

analyst should switch from vetting candidate links to manually 

searching for links not in the candidate list.  

Categories and Subject Descriptors 
D.2.1 [Requirements/Specifications]: Tools. 

General Terms 
Measurement, Economics, Experimentation, Human Factors. 

Keywords 
Traceability, study of the analyst, effort, false positives, Type I 

error, Type II error. 

1. INTRODUCTION 
Traceability research concentrated on automating the tracing 

process has been proceeding in two distinct and complimentary 

directions. The first direction, the study of methods for 

automating tracing tasks [1][2][3][4], concentrates on automated 

analysis of textual artifacts in search of traceability links. The 

second direction, the study of the analyst interaction with 

automated tools, is emerging because industry tracing processes 

require the involvement of human analysts and places 

responsibility for the final traces on them. Preliminary results 

[5,6] indicate that there is a complex relationship between the 

quality of the candidate traces produced by automated methods 

and the quality of the final traces produced by the analysts.  

The main goal of the research on automating tracing can be 

succinctly captured as follows: reduce analyst effort while keeping 

traceability matrix accuracy high. The majority of the traceability 

research [1][2][3][4][5] in this area concentrates on the latter part 

of the goal: preserving accuracy. Effort estimation in tracing tasks 

remains an understudied topic, although recently some important 

studies in this area have been conducted [6]. 

One explanation of why effort estimation is understudied relates 

to the relative ease with which accuracy can be evaluated and the 

relative difficulty with which effort can be evaluated in tracing 

tasks. Specifically, there are well-defined, community-accepted 

measures of accuracy such as recall, precision, failure rate, f-

measure, and average expected precision which appeared 

concomitantly in traceability studies using information retrieval 

and text mining methods for automatic trace recovery. Analyst 

effort evaluation and estimation in tracing tasks, however, lacks a 

common effort model that looks beyond the time spent 

performing the tasks and addresses the structure of the tracing 

process. In this paper, we propose a family of such effort models. 

We partition the analyst work into specific individual subtasks 

and estimate the total analyst effort by controlling the relationship 

between the subtask analyst effort. 

The paper is organized as follows. In Section 2, we present some 

background on traceability research and practical challenges that 

motivate the need for the model (why?). Our position is also 

stated. Section 3 describes the theoretical model (what?). Section 

4 presents/discusses some simulations illustrating how the model 

could be used to guide analyst work. Section 5 discusses the 

challenges and questions that the proposed research will address 

in the future. 

2. BACKGROUND 
Much research has focused on the effectiveness of trace recovery 

techniques [1][2][3][4]. As this research became more mature and 

empirical validation ensued, it became clear that an uncontrolled 

(and possibly uncontrollable) variable in the tracing process is the 

human analyst, who has the final say on whether or not a link 

recovered by a tracing technique is correct [7]. Assuming that 

tracing techniques are as effective as possible, it is important to 

study the analyst role in tracing to ensure that techniques are 

efficient and optimally apply analyst effort. 

Toward that end, the authors examined a number of possible ways 

that an analyst might interact with an automated method [8]. We 

found that the most important factor in reducing analyst effort was 

for the analyst to know “when to stop” examining items retrieved 

by the tool. The authors have examined the accuracy of feedback 

provided by analysts (this is a link, this is not a link; similar to 
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Google’s “more hits like this” feature) and whether or not it is 

influenced by the quality of the tool-provided links [7][9]. 

In examining the efficiency of tracing techniques, it seems 

reasonable that researchers should first ensure that automated 

techniques are more efficient than manual tracing. Early work has 

established this to be true [1][10]. Recent work, however, has 

challenged the notion that manual tracing may be much more time 

consuming than automated methods [11]. It appears that for small 

tracing problems, where the target elements have been restricted 

to a matching subset, human analysts may be as accurate as, and 

possibly even faster than, an automated tool [11]. Tracing needs to 

be applied to the artifacts of large software systems too, though. It 

is highly unlikely that large system tracing will be a manual 

undertaking, so it is important to ensure that automated techniques 

can assist a human analyst with the tracing task. 

In most settings where an analyst is working with an automated 

tracing tool, a list of retrieved links between the high level or 

source artifact and the low level or target artifact is presented 

(e.g., tracing from a requirement specification to test cases), called 

candidate links (so called until a human confirms them). The 

analyst vets the candidate links, marking them as links or rejecting 

them as false positives. The analyst may also perform searches 

into the target artifact to look for links not retrieved by the tool.   

We are interested in studying the analyst interaction with the 

tracing tool in an attempt to understand where most of the analyst 

effort is expended.  Why?  We do this so that we might either 

redesign/modify automated tools to take into account the least 

efficient aspects of the task and/or so that we can provide 

guidance to analysts on how to most efficiently interact with such 

a tool.  Toward that end, we present a theoretical model of the 

analyst interaction with a tracing tool.  We further examine ways 

to simplify the model so that it can be more easily 

simulated/studied.  We illustrate the use of the model in a number 

of tracing scenarios1. 

POSITION:  It is our position that a model of analyst effort is 

needed in order to study analyst behavior, in order to advise 

analysts on how to make the best use of their time, and to permit 

better comparison of manual and automated techniques. 

3. MODEL OF ANALYST EFFORT 
We propose a model of analyst effort in tracing tasks based on the 

specific types of analyst activities that occur during tracing. In 

particular, we model the effort in the following scenario. 

An analyst is asked to perform a tracing task for a pair of artifacts. 

The high-level (source) artifact has N elements, the low-level 

(target) artifact has M elements.  The analyst is using a software 

tool which produces a candidate traceability matrix (candidate 

TM). During the tracing process, the analyst essentially repeatedly 

performs the following three subtasks:  Confirmation of a link. 

The analyst examines a candidate link from a software-generated 

candidate TM and confirms that this is a true link.  Rejection of a 

link. The analyst examines a candidate link from a software-

generated candidate TM and establishes that it is a false 

positive. The analyst then rejects the candidate link.  Addition of 

a link. The analyst examines the low-level and the high-level 

                                                                 
1 To keep this paper focused on the model, we use synthetic tracing scenarios here. 

Our forthcoming work will apply the model as an evaluation technique for effort 

estimation using real data. 

artifacts and determines that there exists a traceability link 

between a pair of elements that was not captured in the software-

generated candidate TM.  The analyst searches for and adds the 

link. The analyst is done when (s)he has validated and/or 

discovered all true links between the source and target artifacts. 

We propose to estimate the analyst effort when performing such a 

tracing task using the model described below2. We introduce the 

following notation. Let the true traceability matrix contain True 

number of links. Let the candidate traceability matrix contain 

Retrieved number of links, which we represent as 

,Re MissesHitstrieved  

where Hits  is the number of true retrieved links and Misses is the 

number of retrieved false positives. In this situation, the analyst 

will confirm Hits links, will reject Misses links, and will have to 

add True – Hits links. We note that, in general, the effort an 

analyst spends on confirming or rejecting one link depends solely 

on the contents of the link itself (and is roughly proportional to the 

amount of text the analyst needs to read). At the same time, the 

more links the analyst has already examined, the less effort it will 

take for the analyst to add a new link to the trace, as the space of 

possible links to be added shrinks. As such, we introduce the 

following effort parameters. Let A denote the average effort it 

takes an analyst to confirm a link, B denote the average effort it 

takes an analyst to reject a link, and C denote the average effort it 

takes an analyst to add a link before the analyst has examined 

candidate links in the trace. 

Using the notation described above, we estimate the analyst effort 

to complete the tracing process as follows: 

NM

MissesHitsNM
HitsTrueCMissesBHitsAEffort

That is, the analyst effort is estimated as the combination of: the 

analyst effort to confirm all true links from the candidate TM, the 

analyst effort to reject all the false positives from the candidate 

TM, and the effort to discover and add all the true links that were 

missing from the candidate TM. Notice that we estimate the latter 

effort (add links) as follows: we assume that the analyst first 

evaluates the links from the candidate TM. We then scale the 

effort it takes to discover each of the remaining links by a 

percentage of the potential links that have not been observed yet. 

For example, if a candidate TM retrieves 25% of all possible 

element pairs (links), we estimate that the effort it would take an 

analyst to add one undiscovered link to the final TM is 0.75 of the 

analyst's expected effort in a fully unobserved task. 

Simplified Model. In the model above, we used different 

estimates for the effort it takes to reject and the effort it takes to 

confirm a link from a candidate TM. In practice though, both 

tasks involve the same set of steps: examining the text of the 

source and target elements and rendering a yes/no decision. We 

posit that we can, under normal circumstances, treat the effort of 

confirmation and the effort of rejection as being the same: 

A = B. 

If this is the case, we can simplify our effort model: 

NM

trievedNM
HitsTrueCtrievedAEffort

Re
Re

. 

                                                                 
2 We note that while the model we propose assumes that a candidate TM is 

produced by a software tool, it can be used to estimate analyst effort in a pure 

manual tracing process by setting the candidate TM as empty. As such, the model 

is applicable to a wide range of tracing scenarios. 



In general, effort is measured in time, or person-time. However, 

our effort estimates so far are unit-less. As such, we can simplify 

the model even further, by introducing the model parameter α = 

C/A: the ratio of effort between dealing with a reported candidate 

link and discovery of an unreported true link.  We can then 

represent our effort estimate in a way that only makes it 

dependent on a single parameter: 

NM

trievedNM
HitsTruetrievedEffort

Re
Re

. 

Discussion. The proposed parameter α has been used informally 

in past traceability studies [1][10][7]. It represents the intuition 

that it takes an analyst α times as much effort to discover an error 

of omission (find an unreported true link) than to correct an error 

of commission (reject a false positive).  It is important to note that 

there is no unique value for α. In practice, the specific value of 

parameter α will vary from tracing task to tracing task and from 

analyst to analyst. The value of the model is in the fact that we 

can substitute multiple values of α and produce multiple 

observations (see Section 4 for specific examples).   

Given a value for a parameter α and a tracing scenario, we can 

estimate the analyst effort to recover the correct trace, based on 

the quality of the candidate TM (number of true links retrieved 

and number of false positives) and analyst behavior (how many 

links the analyst has inspected).  Next, we examine a number of 
scenarios under which the model has been applied. 

4. USE OF THE MODEL 
To emphasize position of this paper (the effort model itself), we 

illustrate the variety of possible uses for the proposed effort 

estimation model using a number of hypothetical examples. We 

plan to provide analysis of the actual tracing experiments using 

the proposed effort model in a number of forthcoming works. 

Example 1. Consider a tracing scenario where two automated 

methods, TraceIt and AutoTrace, are applied to a tracing problem. 

For illustrative purposes, let the source document contain 100 

elements and the target document contain 200 elements for a total 

of 20,000 possible links between the two documents.  Let there be 

500 true links in the actual TM.  Let TraceIt retrieve 5000 

candidate links, of which 200 are true links (for 4% precision and 

40% recall). Let AutoTrace retrieve 6000 candidate links of which 

300 are true links (for 5% precision and 60% recall). 

Notice that AutoTrace produces a candidate TM with both higher 

precision and higher recall. So, according to the traditional 

accuracy-based evaluation techniques, AutoTrace appears to be 

preferable to TraceIt. 

Our effort model allows us to introduce some nuances to such an 

evaluation.  We note that, given the total number of possible links, 

the number of retrieved links, and the number of true links and 

true retrieved links, our effort model becomes a linear function in 

α. The effort estimates for the two methods are: 

TraceIt: 5000225
20000

15000
3005000:TraceIt Effort

 

AutoTrace: 6000140
20000

14000
2006000Effort

 

These estimates are made under the assumption that the analyst 

will examine all retrieved links and then will spend time finding 

all missing links in each case (all links will eventually be found). 

Figure 1 shows the graph of the effort estimate functions.  

As seen from this graph, the method accounting for the lesser 

expected effort depends on the value of the parameter α. For 

smaller values of α (from 1 to 11), TraceIt (dashed line on the 

graph) accounts for lesser effort, despite producing a less accurate 

candidate TM. For larger values of α, AutoTrace leads to better 

estimated effort.   

 

Figure 1. Effort Estimate Functions, Example 1 

Example 2.  In this example, we show a more involved method 

analysis scenario, which estimates effort at each step of the 

tracing process. Consider a task of tracing a source document with 

50 elements to a target document with 100 elements for a total of 

5000 combinatorial links. The TM contains 50 true links. Two 

methods, RuleTrace and iTrace are applied to the task. Both 

RuleTrace and iTrace retrieve 225 links, and both retrieve 45 true 

links among them for  90% recall with 20% precision. Both 

methods order candidate links by descending similarity score.   

Suppose an analyst works using an environment in which (s)he is 

checking links in the order of their similarity score (examine 

highest first).  RuleTrace orders candidate links in such a way that 

a true link shows up every five links. That is, there is one true link 

in the top five links, there is one more in the next five, and so on. 

When examined in this order, recall increases in an evenhanded 

manner, and precision is kept around the 20% level throughout the 

entire process of examining the retrieved candidate links.  iTrace  

has 25 true links in the top 50 links distributed as follows: the first 

five links are all true, three out of the next five are true, and 2 to 3 

links out of each of the following five-tuple of candidate links are 

true.  After that, the following 130 links are false positives. 

Finally, the last 45 candidate links contain the remaining 20 true 

links roughly evenly distributed. 

Figures 2 and 3 show the estimated effort throughout the trace 

validation process for each of the methods. We used five different 

values of the parameter α: 2, 5, 10, 15, and 20. The estimated 

effort is plotted against the number of observed links. The graphs 

simulate the following observation:  

For as long as there are candidate links from the 

automatically generated candidate trace, at each step the 

analyst has a choice: examine the next candidate link or stop 

link examination and begin retrieving missing links. 

Estimated effort based on parameter alpha 
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The estimated effort in the graphs is plotted against the number of 

candidate links confirmed/rejected by the analyst. For iTrace, 

assuming that α= 10, if the analyst observes the first 50 links and 

then switches to recovery of missing links, her estimated effort is 

297.5;  if the analyst chooses instead to examine 200 links, her 

effort estimate is 324.8. Of these two choices, it is preferable for 

the analyst to stop after examining the first 50 links.  

 In Figures 4 and 5, we compare the effort estimation curves for 

the same values of α (5, 10) for RuleTrace and iTrace.  From 

these curves, we can see two things.  Observation 1:  at which 

point the absolute minimum estimate for each method comes:  

246.875 for RuleTrace for α=5 at 50 observed links (Figure 4), 

272.8 for RuleTrace at α =10 at 225 observed links (Figure 5); 

173.75 for iTrace at α =5 at 50 observed links (Figure 4) and 

272.75 for iTrace at α =10 at 225 observed links (Figure 5). 

Observation 2: which circumstances lead to (a) expected analyst 

effort being essentially independent of the number of observed 

candidate links; (b) expected analyst effort increasing with the 

increase in number of observed links; and (c) expected analyst 

effort decreasing in the number of observed candidate links. This 

is essentially controlled by the relationship between α and the 

precision of the method. Whenever precision ≈ 1/ α, the search for 

a missing link takes about the same time as confirmation of a 

single true link (together with the rejection of nearby false 

positives), and thus the expected effort will remain roughly the 

same regardless of where the analyst chooses to switch from 

candidate link vetting to missing link search. When precision < 1/ 

α, it is faster to discover missing links than sort through the 

candidate TM, so the fewer candidate links that are vetted, the 

better the effort estimate. Finally, if precision > 1/ α, then link 

confirmation is more productive than searching for links: the more 

candidate links vetted, the lower the effort estimate.  

From Observation 1, it is clear that lower values of α yield lower 

effort estimates.  Also, the “winner” appears to be iTrace with α 

of 5 and effort of 173.75 (the lowest effort estimate).  From 

Observation 2, it is likely that an analyst would prefer RuleTrace 

over iTrace because effort is constant:  it does not matter when an 

analyst switches to looking for missing links.   Note that this is in 

contrast to Observation 1 that iTrace has the lowest effort 

estimate.  

 

Figure 2.Effort Estimate for Alpha Values, RuleTrace, 

Example 2 

 

Figure 3. Effort Estimate for Alpha Values, iTrace, Example 2 

 

Figure 4. Effort Estimates for Alpha = 5, Example 2 

 

Figure 5. Effort Estimates for Alpha = 10, Example 2 
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It should be noted that the specifics of these examples are not that 

important. What is important is that we can use the  

proposed model to look at different tracing scenarios and compare  

them to each other in an apples-to-apples fashion. It is clear that 

the underlying issue is the comparison of proportions under 

specific assumptions about α.  But α is important because it varies 

from task to task and from person to person. The model, therefore, 

is adaptable to the specifics of individual tasks. 

Note also that the model is proposed for use in traceability 

studies, where we can observe key parameters of the model 

related to the true TM: number of true links, number of true links 

retrieved by an automated method, etc.  It is possible to apply this 

model in practice to study the estimated ranges of analyst effort 

when the true TM is not available:  we can fix α. Information 

about the true retrieved links will be available to us, but not 

information about the total number of true links. We can estimate 

the number of true links and construct estimated effort using the 

model for different values of the size of the true TM.  

5. WHAT TO STUDY AND HOW TO 

STUDY IT? 
We posited that an effort estimation model is necessary in order to 

study the role of the human analyst in traceability recovery and 

validation. We proposed a theoretical and a simplified model that 

depends on one parameter:  the effort to confirm/reject a link, 

denoted α. We examined two examples using the model.  It 

appears that such a model can help compare tracing scenarios. 

We envision that a number of scenarios can be examined, such as:  

Is it better to have 50% recall and 40% precision or 60% recall 

and 30% precision? What is better: a method that retrieves very 

few links but with high precision or a method that retrieves many 

true links but with low precision?  What is better:  to have true 

links show up evenly, or to have them show up in chunks at the 

top and at the bottom of candidate link lists? With this, we could 

“rate” a tool as “use with datasets of type N.” We would need to 

characterize datasets to “predict” the link distributions (what is 

meant by “type N”). 

We invite traceability researchers to examine, evaluate, validate, 

and comment on the proposed model. We also welcome 

suggestions on scenarios that can be examined using the model. 
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