
Towards a Model of Analyst Effort for Traceability
Research

Alex Dekhtyar
CalPoly

San Luis Obispo
California

001 + 1 805 756 2387

dekhtyar@calpoly.edu

Jane Huffman Hayes, Matt Smith
University of Kentucky

Lexington
Kentucky

001 +1 859 257 3171

hayes@cs.uky.edu, matt40413@aol.com

ABSTRACT
This paper posits that a theoretical model of analyst effort in

tracing tasks is necessary to assist with study of the analyst.

Specifically, it is clear from prior work by numerous research

groups that the important factors in such a model are: the amount

of time it takes for an analyst to vet a given candidate link and the

amount of time it takes an analyst to find a missing link. This

paper introduces a theoretical model of analyst effort as well as a

simplified model. A number of simulations were undertaken in

order to build effort curves to assist in evaluating numerous

tracing scenarios, such as determining at what point in time an

analyst should switch from vetting candidate links to manually

searching for links not in the candidate list.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Tools.

General Terms
Measurement, Economics, Experimentation, Human Factors.

Keywords
Traceability, study of the analyst, effort, false positives, Type I

error, Type II error.

1. INTRODUCTION
Traceability research concentrated on automating the tracing

process has been proceeding in two distinct and complimentary

directions. The first direction, the study of methods for

automating tracing tasks [1][2][3][4], concentrates on automated

analysis of textual artifacts in search of traceability links. The

second direction, the study of the analyst interaction with

automated tools, is emerging because industry tracing processes

require the involvement of human analysts and places

responsibility for the final traces on them. Preliminary results

[5,6] indicate that there is a complex relationship between the

quality of the candidate traces produced by automated methods

and the quality of the final traces produced by the analysts.

The main goal of the research on automating tracing can be

succinctly captured as follows: reduce analyst effort while keeping

traceability matrix accuracy high. The majority of the traceability

research [1][2][3][4][5] in this area concentrates on the latter part

of the goal: preserving accuracy. Effort estimation in tracing tasks

remains an understudied topic, although recently some important

studies in this area have been conducted [6].

One explanation of why effort estimation is understudied relates

to the relative ease with which accuracy can be evaluated and the

relative difficulty with which effort can be evaluated in tracing

tasks. Specifically, there are well-defined, community-accepted

measures of accuracy such as recall, precision, failure rate, f-

measure, and average expected precision which appeared

concomitantly in traceability studies using information retrieval

and text mining methods for automatic trace recovery. Analyst

effort evaluation and estimation in tracing tasks, however, lacks a

common effort model that looks beyond the time spent

performing the tasks and addresses the structure of the tracing

process. In this paper, we propose a family of such effort models.

We partition the analyst work into specific individual subtasks

and estimate the total analyst effort by controlling the relationship

between the subtask analyst effort.

The paper is organized as follows. In Section 2, we present some

background on traceability research and practical challenges that

motivate the need for the model (why?). Our position is also

stated. Section 3 describes the theoretical model (what?). Section

4 presents/discusses some simulations illustrating how the model

could be used to guide analyst work. Section 5 discusses the

challenges and questions that the proposed research will address

in the future.

2. BACKGROUND
Much research has focused on the effectiveness of trace recovery

techniques [1][2][3][4]. As this research became more mature and

empirical validation ensued, it became clear that an uncontrolled

(and possibly uncontrollable) variable in the tracing process is the

human analyst, who has the final say on whether or not a link

recovered by a tracing technique is correct [7]. Assuming that

tracing techniques are as effective as possible, it is important to

study the analyst role in tracing to ensure that techniques are

efficient and optimally apply analyst effort.

Toward that end, the authors examined a number of possible ways

that an analyst might interact with an automated method [8]. We

found that the most important factor in reducing analyst effort was

for the analyst to know “when to stop” examining items retrieved

by the tool. The authors have examined the accuracy of feedback

provided by analysts (this is a link, this is not a link; similar to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICSE'11, May 21-28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0589-1/11/05... $10.00.

Google’s “more hits like this” feature) and whether or not it is

influenced by the quality of the tool-provided links [7][9].

In examining the efficiency of tracing techniques, it seems

reasonable that researchers should first ensure that automated

techniques are more efficient than manual tracing. Early work has

established this to be true [1][10]. Recent work, however, has

challenged the notion that manual tracing may be much more time

consuming than automated methods [11]. It appears that for small

tracing problems, where the target elements have been restricted

to a matching subset, human analysts may be as accurate as, and

possibly even faster than, an automated tool [11]. Tracing needs to

be applied to the artifacts of large software systems too, though. It

is highly unlikely that large system tracing will be a manual

undertaking, so it is important to ensure that automated techniques

can assist a human analyst with the tracing task.

In most settings where an analyst is working with an automated

tracing tool, a list of retrieved links between the high level or

source artifact and the low level or target artifact is presented

(e.g., tracing from a requirement specification to test cases), called

candidate links (so called until a human confirms them). The

analyst vets the candidate links, marking them as links or rejecting

them as false positives. The analyst may also perform searches

into the target artifact to look for links not retrieved by the tool.

We are interested in studying the analyst interaction with the

tracing tool in an attempt to understand where most of the analyst

effort is expended. Why? We do this so that we might either

redesign/modify automated tools to take into account the least

efficient aspects of the task and/or so that we can provide

guidance to analysts on how to most efficiently interact with such

a tool. Toward that end, we present a theoretical model of the

analyst interaction with a tracing tool. We further examine ways

to simplify the model so that it can be more easily

simulated/studied. We illustrate the use of the model in a number

of tracing scenarios1.

POSITION: It is our position that a model of analyst effort is

needed in order to study analyst behavior, in order to advise

analysts on how to make the best use of their time, and to permit

better comparison of manual and automated techniques.

3. MODEL OF ANALYST EFFORT
We propose a model of analyst effort in tracing tasks based on the

specific types of analyst activities that occur during tracing. In

particular, we model the effort in the following scenario.

An analyst is asked to perform a tracing task for a pair of artifacts.

The high-level (source) artifact has N elements, the low-level

(target) artifact has M elements. The analyst is using a software

tool which produces a candidate traceability matrix (candidate

TM). During the tracing process, the analyst essentially repeatedly

performs the following three subtasks: Confirmation of a link.

The analyst examines a candidate link from a software-generated

candidate TM and confirms that this is a true link. Rejection of a

link. The analyst examines a candidate link from a software-

generated candidate TM and establishes that it is a false

positive. The analyst then rejects the candidate link. Addition of

a link. The analyst examines the low-level and the high-level

1 To keep this paper focused on the model, we use synthetic tracing scenarios here.

Our forthcoming work will apply the model as an evaluation technique for effort

estimation using real data.

artifacts and determines that there exists a traceability link

between a pair of elements that was not captured in the software-

generated candidate TM. The analyst searches for and adds the

link. The analyst is done when (s)he has validated and/or

discovered all true links between the source and target artifacts.

We propose to estimate the analyst effort when performing such a

tracing task using the model described below2. We introduce the

following notation. Let the true traceability matrix contain True

number of links. Let the candidate traceability matrix contain

Retrieved number of links, which we represent as

,Re MissesHitstrieved

where Hits is the number of true retrieved links and Misses is the

number of retrieved false positives. In this situation, the analyst

will confirm Hits links, will reject Misses links, and will have to

add True – Hits links. We note that, in general, the effort an

analyst spends on confirming or rejecting one link depends solely

on the contents of the link itself (and is roughly proportional to the

amount of text the analyst needs to read). At the same time, the

more links the analyst has already examined, the less effort it will

take for the analyst to add a new link to the trace, as the space of

possible links to be added shrinks. As such, we introduce the

following effort parameters. Let A denote the average effort it

takes an analyst to confirm a link, B denote the average effort it

takes an analyst to reject a link, and C denote the average effort it

takes an analyst to add a link before the analyst has examined

candidate links in the trace.

Using the notation described above, we estimate the analyst effort

to complete the tracing process as follows:

NM

MissesHitsNM
HitsTrueCMissesBHitsAEffort

That is, the analyst effort is estimated as the combination of: the

analyst effort to confirm all true links from the candidate TM, the

analyst effort to reject all the false positives from the candidate

TM, and the effort to discover and add all the true links that were

missing from the candidate TM. Notice that we estimate the latter

effort (add links) as follows: we assume that the analyst first

evaluates the links from the candidate TM. We then scale the

effort it takes to discover each of the remaining links by a

percentage of the potential links that have not been observed yet.

For example, if a candidate TM retrieves 25% of all possible

element pairs (links), we estimate that the effort it would take an

analyst to add one undiscovered link to the final TM is 0.75 of the

analyst's expected effort in a fully unobserved task.

Simplified Model. In the model above, we used different

estimates for the effort it takes to reject and the effort it takes to

confirm a link from a candidate TM. In practice though, both

tasks involve the same set of steps: examining the text of the

source and target elements and rendering a yes/no decision. We

posit that we can, under normal circumstances, treat the effort of

confirmation and the effort of rejection as being the same:

A = B.

If this is the case, we can simplify our effort model:

NM

trievedNM
HitsTrueCtrievedAEffort

Re
Re

.

2 We note that while the model we propose assumes that a candidate TM is

produced by a software tool, it can be used to estimate analyst effort in a pure

manual tracing process by setting the candidate TM as empty. As such, the model

is applicable to a wide range of tracing scenarios.

In general, effort is measured in time, or person-time. However,

our effort estimates so far are unit-less. As such, we can simplify

the model even further, by introducing the model parameter α =

C/A: the ratio of effort between dealing with a reported candidate

link and discovery of an unreported true link. We can then

represent our effort estimate in a way that only makes it

dependent on a single parameter:

NM

trievedNM
HitsTruetrievedEffort

Re
Re

.

Discussion. The proposed parameter α has been used informally

in past traceability studies [1][10][7]. It represents the intuition

that it takes an analyst α times as much effort to discover an error

of omission (find an unreported true link) than to correct an error

of commission (reject a false positive). It is important to note that

there is no unique value for α. In practice, the specific value of

parameter α will vary from tracing task to tracing task and from

analyst to analyst. The value of the model is in the fact that we

can substitute multiple values of α and produce multiple

observations (see Section 4 for specific examples).

Given a value for a parameter α and a tracing scenario, we can

estimate the analyst effort to recover the correct trace, based on

the quality of the candidate TM (number of true links retrieved

and number of false positives) and analyst behavior (how many

links the analyst has inspected). Next, we examine a number of
scenarios under which the model has been applied.

4. USE OF THE MODEL
To emphasize position of this paper (the effort model itself), we

illustrate the variety of possible uses for the proposed effort

estimation model using a number of hypothetical examples. We

plan to provide analysis of the actual tracing experiments using

the proposed effort model in a number of forthcoming works.

Example 1. Consider a tracing scenario where two automated

methods, TraceIt and AutoTrace, are applied to a tracing problem.

For illustrative purposes, let the source document contain 100

elements and the target document contain 200 elements for a total

of 20,000 possible links between the two documents. Let there be

500 true links in the actual TM. Let TraceIt retrieve 5000

candidate links, of which 200 are true links (for 4% precision and

40% recall). Let AutoTrace retrieve 6000 candidate links of which

300 are true links (for 5% precision and 60% recall).

Notice that AutoTrace produces a candidate TM with both higher

precision and higher recall. So, according to the traditional

accuracy-based evaluation techniques, AutoTrace appears to be

preferable to TraceIt.

Our effort model allows us to introduce some nuances to such an

evaluation. We note that, given the total number of possible links,

the number of retrieved links, and the number of true links and

true retrieved links, our effort model becomes a linear function in

α. The effort estimates for the two methods are:

TraceIt: 5000225
20000

15000
3005000:TraceIt Effort

AutoTrace: 6000140
20000

14000
2006000Effort

These estimates are made under the assumption that the analyst

will examine all retrieved links and then will spend time finding

all missing links in each case (all links will eventually be found).

Figure 1 shows the graph of the effort estimate functions.

As seen from this graph, the method accounting for the lesser

expected effort depends on the value of the parameter α. For

smaller values of α (from 1 to 11), TraceIt (dashed line on the

graph) accounts for lesser effort, despite producing a less accurate

candidate TM. For larger values of α, AutoTrace leads to better

estimated effort.

Figure 1. Effort Estimate Functions, Example 1

Example 2. In this example, we show a more involved method

analysis scenario, which estimates effort at each step of the

tracing process. Consider a task of tracing a source document with

50 elements to a target document with 100 elements for a total of

5000 combinatorial links. The TM contains 50 true links. Two

methods, RuleTrace and iTrace are applied to the task. Both

RuleTrace and iTrace retrieve 225 links, and both retrieve 45 true

links among them for 90% recall with 20% precision. Both

methods order candidate links by descending similarity score.

Suppose an analyst works using an environment in which (s)he is

checking links in the order of their similarity score (examine

highest first). RuleTrace orders candidate links in such a way that

a true link shows up every five links. That is, there is one true link

in the top five links, there is one more in the next five, and so on.

When examined in this order, recall increases in an evenhanded

manner, and precision is kept around the 20% level throughout the

entire process of examining the retrieved candidate links. iTrace

has 25 true links in the top 50 links distributed as follows: the first

five links are all true, three out of the next five are true, and 2 to 3

links out of each of the following five-tuple of candidate links are

true. After that, the following 130 links are false positives.

Finally, the last 45 candidate links contain the remaining 20 true

links roughly evenly distributed.

Figures 2 and 3 show the estimated effort throughout the trace

validation process for each of the methods. We used five different

values of the parameter α: 2, 5, 10, 15, and 20. The estimated

effort is plotted against the number of observed links. The graphs

simulate the following observation:

For as long as there are candidate links from the

automatically generated candidate trace, at each step the

analyst has a choice: examine the next candidate link or stop

link examination and begin retrieving missing links.

Estimated effort based on parameter alpha

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 1 2 2

Alpha

Effort

Effort Method 1 Effort Method 2

The estimated effort in the graphs is plotted against the number of

candidate links confirmed/rejected by the analyst. For iTrace,

assuming that α= 10, if the analyst observes the first 50 links and

then switches to recovery of missing links, her estimated effort is

297.5; if the analyst chooses instead to examine 200 links, her

effort estimate is 324.8. Of these two choices, it is preferable for

the analyst to stop after examining the first 50 links.

 In Figures 4 and 5, we compare the effort estimation curves for

the same values of α (5, 10) for RuleTrace and iTrace. From

these curves, we can see two things. Observation 1: at which

point the absolute minimum estimate for each method comes:

246.875 for RuleTrace for α=5 at 50 observed links (Figure 4),

272.8 for RuleTrace at α =10 at 225 observed links (Figure 5);

173.75 for iTrace at α =5 at 50 observed links (Figure 4) and

272.75 for iTrace at α =10 at 225 observed links (Figure 5).

Observation 2: which circumstances lead to (a) expected analyst

effort being essentially independent of the number of observed

candidate links; (b) expected analyst effort increasing with the

increase in number of observed links; and (c) expected analyst

effort decreasing in the number of observed candidate links. This

is essentially controlled by the relationship between α and the

precision of the method. Whenever precision ≈ 1/ α, the search for

a missing link takes about the same time as confirmation of a

single true link (together with the rejection of nearby false

positives), and thus the expected effort will remain roughly the

same regardless of where the analyst chooses to switch from

candidate link vetting to missing link search. When precision < 1/

α, it is faster to discover missing links than sort through the

candidate TM, so the fewer candidate links that are vetted, the

better the effort estimate. Finally, if precision > 1/ α, then link

confirmation is more productive than searching for links: the more

candidate links vetted, the lower the effort estimate.

From Observation 1, it is clear that lower values of α yield lower

effort estimates. Also, the “winner” appears to be iTrace with α

of 5 and effort of 173.75 (the lowest effort estimate). From

Observation 2, it is likely that an analyst would prefer RuleTrace

over iTrace because effort is constant: it does not matter when an

analyst switches to looking for missing links. Note that this is in

contrast to Observation 1 that iTrace has the lowest effort

estimate.

Figure 2.Effort Estimate for Alpha Values, RuleTrace,

Example 2

Figure 3. Effort Estimate for Alpha Values, iTrace, Example 2

Figure 4. Effort Estimates for Alpha = 5, Example 2

Figure 5. Effort Estimates for Alpha = 10, Example 2

0

200

400

600

800

1000

1200

0 50 100 150 200 250

E
s

ti
m

a
te

d
 E

ff
o

rt

Observed candidate links

Example 2: Method 1

Alpha = 2 Alpha = 5 Alpha = 10 Alpha = 20 Alpha = 15

Example 2: Method 2

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250

Observed candidate links

E
s
ti

m
a
te

d
 E

ff
o

rt

Alpha = 2 Alpha = 5 Alpha = 10 Alpha = 20 Alpha = 15

Alpha = 5

0

50

100

150

200

250

300

350

0 50 100 150 200 250

Observed candidate links

E
s
ti

m
a
te

d
 E

ff
o

rt

Method 1 Method 2

Alpha = 10

0

100

200

300

400

500

600

0 50 100 150 200 250

Observed Candidate Links

E
s

ti
m

a
te

d
 E

ff
o

rt

Method 1 Method 2

It should be noted that the specifics of these examples are not that

important. What is important is that we can use the

proposed model to look at different tracing scenarios and compare

them to each other in an apples-to-apples fashion. It is clear that

the underlying issue is the comparison of proportions under

specific assumptions about α. But α is important because it varies

from task to task and from person to person. The model, therefore,

is adaptable to the specifics of individual tasks.

Note also that the model is proposed for use in traceability

studies, where we can observe key parameters of the model

related to the true TM: number of true links, number of true links

retrieved by an automated method, etc. It is possible to apply this

model in practice to study the estimated ranges of analyst effort

when the true TM is not available: we can fix α. Information

about the true retrieved links will be available to us, but not

information about the total number of true links. We can estimate

the number of true links and construct estimated effort using the

model for different values of the size of the true TM.

5. WHAT TO STUDY AND HOW TO

STUDY IT?
We posited that an effort estimation model is necessary in order to

study the role of the human analyst in traceability recovery and

validation. We proposed a theoretical and a simplified model that

depends on one parameter: the effort to confirm/reject a link,

denoted α. We examined two examples using the model. It

appears that such a model can help compare tracing scenarios.

We envision that a number of scenarios can be examined, such as:

Is it better to have 50% recall and 40% precision or 60% recall

and 30% precision? What is better: a method that retrieves very

few links but with high precision or a method that retrieves many

true links but with low precision? What is better: to have true

links show up evenly, or to have them show up in chunks at the

top and at the bottom of candidate link lists? With this, we could

“rate” a tool as “use with datasets of type N.” We would need to

characterize datasets to “predict” the link distributions (what is

meant by “type N”).

We invite traceability researchers to examine, evaluate, validate,

and comment on the proposed model. We also welcome

suggestions on scenarios that can be examined using the model.

6. ACKNOWLEDGMENTS
This work is funded in part by the National Science Foundation

under NSF grants CCF-0811140 and by a Lockheed Martin grant.

7. REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A.D. Lucia, and E.

Merlo, “Recovering Traceability Links between Code and

Documentation,” IEEE Transactions on Software

Engineering, vol. 28, 2002, pp. 970-983.

[2] A. Marcus and J. Maletic, “Recovering Documentation-to-

Source Code Traceability Links using Latent Semantic

Indexing,” Proceedings of the Twenty-Fifth International

Conference on Software Engineering 2003, pp. 125-135.

[3] J. Cleland-Huang, C. Chang, G. Sethi, K. Javvaji, H. Hu, J.

Xia,“Automating speculative queries through event-based

requirements traceability,” Proceedings of the IEEE

Requirements Engineering Conference 2002, pp. 289-296.

[4] J.H. Hayes, A. Dekhtyar, and S. Sundaram, “Advancing

Candidate Link Generation for Requirements Tracing: The

Study of Methods,” IEEE Transactions on Software

Engineering, vol. 32, 2006, pp. 4 - 19.

[5] G. Spanoudakis, A. Zisman, E. Perez-Minana, P. Krause,

“Rule-Based Generation of Requirements Traceability

Relations,”Journal of Sys.and S/W, v72,2004, pp. 105-127.

[6] A. Egyed, F. Graf, and P. Grunbacher, “Effort and Quality

of Recovering Requirements-to-Code Traces: Two

Exploratory Experiments,” Requirements Engineering,

IEEE International Conference on, 2010, pp. 221-230.

[7] J.H. Hayes, A. Dekhtyar, “Humans in the traceability loop:

can't live with 'em, can't live without 'em,” Proceedings of

the 3rd international workshop on Traceability in

emerging forms of software engineering, 2005, pp. 20–23.

[8] A. Dekhtyar, J.H. Hayes, J. Larsen, “Make the Most of

Your Time: How Should the Analyst Work with

Automated Traceability Tools?,” Proceed. of 3rd Internat'l

Workshop Predict. Models in Software Engineering, 2007.

[9] D. Cuddeback, A. Dekhtyar, and J. Hayes, “Automated

Requirements Traceability: The Study of Human

Analysts,” Requirements Engineering, IEEE International

Conference on, 2010, pp. 231-240.

[10] J.H. Hayes, A. Dekhtyar, and J. Osborne, “Improving

Requirements Tracing via Information Retrieval,”

International Conference on Requirements Engineering,

Monterey, California, 2003, pp. 151-161.

[11] A. Egyed, F. Graf, and P. Grunbacher, “Effort and Quality

of Recovering Requirements-to-Code Traces: Two

Exploratory Experiments,” Requirements Engineering,

IEEE International Conference on, 2010, pp. 221-230.

[12] W. Kong, J.H. Hayes, A. Dekhtyar, J. Holden, “How Do

We Trace Requirements? An Initial Study of Analyst

Behavior in Trace Validation Tasks,” Proceedings of

Cooperative and Human Aspects of Software Engineering,

May, 2011.

