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Abstract—An important aspect of traceability experiments is 

the ability to compare techniques.  In order to assure proper 

comparison, it is necessary to perform statistical analysis of 

the dependent variables collected from technique application.  

Currently, there is a lack of components in TraceLab to 

support such analysis.  The Software Verification and 

Validation Research Laboratory (SVVRL) and the Statistics 

Department of the University of Kentucky have developed a 

collection of such components as well as a workflow for 

determining what type of analysis to apply (parametric, non-

parametric).  The components use industry-accepted R 

algorithms.  The components have been validated using 

independent standard statistical algorithms applied to publicly 

available datasets.  This work addresses the Purposed grand 

challenge (research project 4) and Cost-Effective Grand 

Challenge (research project 4) as well as the Valued Grand 

Challenge - research project 6. 

Index Terms—Traceability experiment, statistical analysis, 

TraceLab component, parametric tests, non-parametric tests, 

Purposed grand challenge, Cost-Effective Grand challenge, 

Valued Grand Challenge 

I. INTRODUCTION 

Early traceability papers rarely applied statistical analyses 

as the authors were only able to examine two or three datasets 

and knew that such a small sample could not lead to 

statistically significant results.  With the advent of the use of 

Mean Average Precision (MAP) and other “per query” 

measures, traceability researchers now have many more data 

points (a dataset that has 50 queries searching into 150 

elements now has at least 50 data points versus being 

considered one dataset).  With larger sample sizes, it is now 

incumbent on traceability researchers to apply statistical 

analyses to the dependent variables when running experiments. 

This leads to the next conundrum.  What statistical 

techniques should be used?  How can traceability researchers 

overcome the parade of criticism from reviewers such as:  

"your data did not conform to the assumptions of the statistical 

technique used,”  your test did not have sufficient power,” 

and/or “you cannot use the mean with that type of data.” 

This Challenge paper seeks to address some of the 

aforementioned concerns by providing a collection of TraceLab 

components that take the dependent variables from experiments 

(such as MAP, F, recall, precision) and determine what tests 

are required, check the appropriate assumptions, and run the 

tests.  This paper contains standard language that can be used in 

traceability papers to demonstrate to reviewers that proper 

statistical analysis, designed by statisticians, has been applied. 

The paper is organized as follows.  Section 2 discusses 

statistical tests for traceability.  Section 3 presents some 

thoughts on statistical testing.  Section 4 discusses the 

TraceLab components developed for statistical analysis.  The 

standard language to be used in papers employing these 

Statistics components is provided in Section 5.  Section 6 

discusses evaluation of the TraceLab statistic components, and 

Section 7 concludes and discusses future work. 

II. STATISTICAL TESTS FOR TRACEABILITY 

Currently, it is becoming more commonplace to see non-

parametric techniques applied to dependent variables (such as 

MAP) in various experiments.  Examples include Kong, Hayes, 

Dekhtyar, and Dekhtyar  (used Wilcoxon Signed Rank test) [1], 

Niu and Mahmoud (used Mann Whitney) [2], and Shin, Hayes, 

and Huang (examined correlation of commonly used measures 

and their analysis) [3]. 

It is rare for parametric tests such as student’s t or ANOVA 

to be applied.  It appears that this is due to author fear of 

reviewer criticism versus due to data not meeting required 

assumptions (such as normality).  Yet when normality and 

equal variance assumptions are met, appropriately chosen 

parametric tests are more powerful than their non-parametric 

counterparts and thus should be considered first.  Our TraceLab 

components support such consideration, making statistics 

accessible to all researchers, even those who may not feel 

comfortable working with statistics. 

III. STATISTICAL TESTS 

 Selecting an appropriate inferential method for 

statistical analysis is a complex and highly interactive task. 

Typically, there is not one correct procedure, but there are 



some that are more appropriate and others less and some 

simply inappropriate. An expert statistician will consult 

diagnostic plots, test statistics, p-values, and transformations, 

among other tools, in order to choose a method that is adequate 

and powerful. Automating the process of test selection may 

therefore draw criticism: no automated procedure will be able 

to substitute expertise and experience. On the other hand, with 

widespread availability of free statistical software packages, the 

application of statistical procedures is at the fingertips of many. 

Many researchers simply don’t have advanced statistical 

expertise or experience, or even quick access to expert statistics 

knowledge to choose the most appropriate method, or to decide 

when a standard method is not appropriate. The MeansTest 

algorithm will be useful for this group of researchers. It is 

designed to imitate the major decisions a statistician would 

make when analyzing two-sample data.  

Indeed, the first decision is whether the two samples are 

independent or paired. If paired, then for normal data, the 

paired t-test [7] is the method of choice, while the signed rank 

test [8] is its nonparametric alternate. For independent samples, 

even more important than checking normality is whether it is 

reasonable to assume that both samples come from 

distributions with equal variances. If not, there exist powerful 

approximate methods for the normal distribution case [9-11], 

and for the case in which normal distributions cannot be 

assumed (the Brunner-Munzel test [12]).  

The latter is also an example that the statistics research 

community continues to derive and validate new and more 

powerful or more robust inferential procedures, so that updates 

on the decision trees may have to be made. For example, for 

the comparison of two independent samples of non-normal 

data, the rank-sum test [13], [8], [14] has been the method of 

choice for several decades. However, it assumes that under null 

hypotheses, the variances of both samples are equal. Just 

recently, the Brunner-Munzel [12] test has been devised and 

validated to provide a nonparametric test for location in the 

presence of unequal variances. How are the decisions regarding 

normality and unequal variances made? Normality can be 

assessed using the Shapiro-Wilk [15] test. However, since the 

t-test is rather robust against violations of the normality 

assumption, an alpha-level of 5% can be chosen as a threshold. 

In the case of two independent samples, neither should show 

strong evidence of non-normality. The assumption of equal 

variances in the case of two independent samples is rather 

important and is tested using the Levene-Brown-Forsythe [16, 

17] test at the 5% level. 

IV. TRACELAB STATISTICAL COMPONENTS 

We implemented all of the above tests as individual 

TraceLab components. In this section, we describe the 

implementation details of our composite component, 

MeansTest, as well as our experiences with TraceLab. 

A. R Implementation 

It is straightforward to calculate many test statistics, such as 

the t statistic for the t-test. However, most researchers are 

interested in the p-value of the test statistic, which expresses 

the significance of the result. The computation generally does 

not have an easily computed closed form, so implementing this 

step by hand is undesirable. TraceLab already links with the 

commercial library ALGLIB [4] that provides a limited 

selection of hypothesis tests that return p values. R [5], a 

popular statistics language, supports several tests not in 

ALGLIB that are relevant to our research. In the interest of 

maximum code reuse, we wrote our statistics in R. 

We wrote a TraceLab helper component, called Rscript, 

which returns an opaque reference representing the R runtime. 

TraceLab components can use this opaque reference to execute 

any R script. In a TraceLab experiment, the user simply 

specifies the path to his or her Rscript.exe in the helper's 

configuration. Then the user can write a component that takes 

the helper as input and can use the helper's API to easily invoke 

their R script, which they store in their component's DLL as an 

embedded resource. 

Each of our R-based statistics components follows a shared 

workflow. First, the component loads the experiment's sample 

data from the TraceLab workspace. Second, the component 

extracts and executes the R script corresponding to the statistics 

test in question. Finally, the component stores the resulting test 

statistic and p-value in the TraceLab workspace. 

We unknowingly developed the ability to run R in parallel 

to similar efforts at the College of William and Mary. Their 

work, RPlugin, uses a similar technique to run R scripts, but 

uses a singleton pattern instead of providing a workspace 

variable. We only discovered this overlap inadvertently [6] and 

very late in development, so it should be interesting to compare 

the two implementations in future work. For now, we turn our 

attention to the main novelty, the MeansTest component. 

B. MeansTest Implementation 

Although R provides implementations for all of the tests 

mentioned in section III, R assumes that the user is a statistics 

savant who is aware of all of the assumptions that the tests 

entail. Our goal is to reduce the user's burden by cataloging and 

automatically testing these assumptions. TraceLab helped us in 

this respect by providing a very useful feature called composite 

components. The composite component wizard in TraceLab 

enables researchers to take a subset of an existing experiment 

and encapsulate it as one component. Using this wizard, we 

developed a composite component called MeansTest. The 

MeansTest component takes just a few parameters: the two 

samples the user is comparing, a flag specifying whether the 

samples represent paired data, and the Rscript opaque 

reference. After executing an experiment containing a 

MeansTest, TraceLab stores the p-value of the test and the 

appropriate test statistic in the workspace. MeansTest then 

prints a human-readable summary of the steps and tests 

involved in the computation. 

Figure 1 shows the TraceLab dependency graph of 

MeansTest. As can be seen, MeansTest automatically verifies 

all of the assumptions one would normally have to check 

before performing a comparison of location parameters.  First, 



MeansTest checks whether the user provided paired data. In the 

paired case, MeansTest branches to the left to test the normality 

of the pairs with Shapiro-Wilks. If the difference between the 

pairs is normally distributed, MeansTest performs the paired t-

test. Otherwise, MeansTest performs the nonparametric 

Wilcoxon signed-rank test. 

In the case the samples were not paired, MeansTest 

branches to the right and tests the normality of the two sample 

groups separately. If both groups are normal, MeansTest 

compares the sample variances for equality. If there is no 

evidence against this assumption, it performs a classical t-test 

using the pooled sample standard deviation; otherwise, it 

makes Welch's adjustment to the standard deviation when 

performing the t-test. 

If either of the groups is not normal, MeansTest branches 

into the nonparametric tests. MeansTest checks the assumption 

of overlap between the samples. If this assumption holds, 

MeansTest simply invokes the Brunner-Munzel non-parametric 

test, which is designed for testing location differences in the 

presence of possibly unequal variances. When there is no 

overlap, then clearly the difference is significant, so MeansTest 

invokes the two-sample rank sum test (Mann Whitney U test) 

only to provide the researcher with a non-zero p-value. 

MeansTest is by no means a complete summary of all 

possible statistics tests, but is representative of the involved 

thought process we use in practice when comparing means. 

There are many other tests for normality, equal variance, and 

shift in location that fit specialized circumstances. There are 

also some assumptions, such as independence and identical 

distributions, which statisticians have yet to invent ways to 

numerically verify. We hope the TraceLab dependency graph 

of MeansTest will start a dialog in the statistics community to 

agree on a complete process for testing for shifts in means. 

C. Experiences 

In general, we found that the TraceLab tool was very stable 

and facilitated a wide variety of experiment procedures. As we 

mentioned earlier, composite components proved useful for 

bundling our massive statistics workflow into one 

comprehensive (and comprehensible!) statistics test. Besides 

applications in statistics, we found other uses for TraceLab. For 

instance, we were able to implement a classical mutation 

testing experiment comparing all-definitions testing to random 

testing. Mutation testing experiments are entirely outside the 

scope of TraceLab, yet the tool proved to be a plausible fit. 

Although the component framework adds extra work to 

experiment implementation, it is our experience that this extra 

work leads to portable experiments with reproducible results. 

While the core tool provides a nice framework for 

developing experiments, we discovered several major issues 

indicating that the stock components are still experiencing 

growing pains. For instance, we identified a computation 

failure in the TraceLab vector space model where it reported 

that the cosine similarity between a vector and itself was far 

less than 1.0 [18]. This failure resulted from an error in the TF-

IDF computation where the authors were normalizing the 

document vectors but not updating their pre-computed lengths. 

This mistake adversely affected the similarity measures; for 

example, Equation 1 gives the resulting erroneous cosine 

similarity: 

    (   )  
   

| || | 
 

The other measures were similarly impacted. For obvious 

reasons, this error invalidates the results of every tracing 

experiment run in TraceLab 0.5 or earlier using the default 

tracing components. 

Errors like these aside, we see the need for design and 

documentation improvements to the stock components as well. 

For instance, it is not possible to extract the per-artifact recall 

and precision scores from the experiment results data type; the 

data type hides these scores from the public API in the form of 

summary statistics. This API makes it impossible to perform 

meaningful analysis of experiment results. Also, the file 

importer and exporter descriptions provide no hint as to the 

expected file format. The worst offender is the “multiple 

dataset importer,” which takes a “configuration file” as input. It 

would be useful to provide the expected formats in the 

components' descriptions. 

Changes to the design of these components will definitely 

help improve productivity in TraceLab, but more work is 

needed. First, TraceLab needs to better advertise the 

 

Fig. 1.  Internals of the MeansTest composite component. 



availability of third-party components to collaborators. The 

Rscript/RPlugin overlap mentioned earlier is a perfect example 

of this necessity. We hope that the new Component Directory 

on coest.org [19] will help improve code reuse to avoid 

collisions like these. 

Another key obstacle to productivity is that all operations, 

no matter how trivial, need to be encapsulated in their own 

components. For instance, to test the normality assumption in 

the paired case, one usually computes the difference between 

the two paired samples and tests the normality of the resulting 

vector. In R, this is very easy; if you have two vectors x and y, 

the expression x-y will return the input vector. However, 

TraceLab did not have a component to compute x-y, so we had 

to write our own x-y as a separate TraceLab component (see 

GetPairedSample in Figure 1) consisting of 99% TraceLab 

boilerplate and 1% actual code. We postulate that the existing 

decision nodes, which support inline scripts for making 

branching decisions, can be repurposed to avoid this 

boilerplate. To this end, we would like to see better 

documentation of decision nodes describing the available 

variables, the process to save workspace variables, and the 

particular .NET dialect in which decision code is written. 

Perhaps the TraceLab developers could help us create a facility 

to script R code inline as well. 

V. STANDARD LANGUAGE FOR PAPERS 

“We used the statistical analysis components available in 

TraceLab. These were designed by computer scientists and 

statisticians at the University of Kentucky and use the well-

respected statistical analysis toolkit R.  The TraceLab 

components, collectively called MeansTest, first examine the 

paired or independent variables for the experiment and 

determine what statistical tests to apply by testing the 

appropriate assumptions.  Next, the TraceLab components 

apply the appropriate statistical test.  The components then 

report the appropriate p-value.  This information has been 

included below.  Details on the statistical analysis methodology 

applied by the TraceLab component can be found in an earlier 

publication by Hays et al.” (with proper citation of this TEFSE 

paper). 

In addition, the researcher shall use the output from 

MeansTest to describe the tests applied.  For each outcome, we 

include standard text below that can be included in research 

papers (filling in the bracketed and dotted sections as 

appropriate), with proper citation of this TEFSE paper. 

Outcome: Brunner-Munzel Test 

“The two techniques were compared using two independent 

samples of {add more details}. We tested for normality in each 

sample, using the Shapiro-Wilk test (Shapiro and Wilk 1965), 

and concluding (at the 5% level) that normality could not be 

assumed. Therefore, the nonparametric Brunner-Munzel test 

(Brunner and Munzel 2000) was chosen for further analysis. 

This test is specifically designed to compare the location of two 

samples in the possible presence of unequal variances. It does 

not assume normality. However, it assumes that the two 

underlying populations have overlapping support. This 

assumption is met since the observations in both samples 

overlap. The Brunner-Munzel test resulted in a test statistic of 

… and a p-value of …, meaning that a significant difference 

between both techniques can be concluded {no evidence for a 

significant difference between both techniques was found}.” 

Outcome: Two-Sample Rank-Sum Test 

“The two techniques were compared using two independent 

samples of {add more details}. We tested for normality in each 

sample, using the Shapiro-Wilk test (Shapiro and Wilk 1965), 

and concluding (at the 5% level) that normality could not be 

assumed. Also, the observations in both groups are totally 

separated. Therefore, the nonparametric two-sample rank-sum 

test (Deuchler 1914, Wilcoxon 1945, Mann and Whitney 1947) 

was chosen for further analysis. It compares the location of two 

samples without assuming normality. The two-sample rank-

sum test resulted in a test statistic of … and a p-value of …, 

meaning that a significant difference between both techniques 

can be concluded {no evidence for a significant difference 

between both techniques was found}.” 

Outcome: two-sample t-test for equal variances   

“The two techniques were compared using two independent 

samples of {add more details}. We tested for normality in each 

sample, using the Shapiro-Wilk test (Shapiro and Wilk 1965), 

and concluding (at the 5% level) that there was no evidence 

against the normality assumption. Using the Levene-Brown-

Forsythe test (Levene 1960, Brown and Forsythe 1974), we 

tested whether variances could be assumed equal for both 

groups. There was no evidence against this assumption (at the 

5% level). Therefore, the t-test for two samples with equal 

variances (Gosset “Student” 1908) was chosen for analysis. It 

resulted in a test statistic of … and a p-value of …, meaning 

that a significant difference between both techniques can be 

concluded {no evidence for a significant difference between 

both techniques was found}.”   

Outcome: two-sample t-test for unequal variances  

(Satterthwaite-Smith-Welch approximation) 

“The two techniques were compared using two independent 

samples of {add more details}. We tested for normality in each 

sample, using the Shapiro-Wilk test (Shapiro and Wilk 1965), 

and concluding (at the 5% level) that there was no evidence 

against the normality assumption. Using the Levene-Brown-

Forsythe test (Levene 1960, Brown and Forsythe 1974), we 

tested whether variances could be assumed equal for both 

groups. We concluded that this was not the case (at the 5% 

level). Therefore, the t-test for two samples with unequal 

variances (Satterthwaite-Smith-Welch approximation; Smith 

1936, Welch 1938, Satterthwaite 1946) was chosen for 

analysis. It resulted in a test statistic of … and a p-value of …, 

meaning that a significant difference between both techniques 

can be concluded {no evidence for a significant difference 

between both techniques was found}.” 

Outcome: paired t-test 

“The two techniques were compared using two paired 

samples of {add more details}. The differences between both 

samples were tested for normality, using the Shapiro-Wilk test 

(Shapiro and Wilk 1965), and concluding (at the 5% level) that 

there was no evidence against the normality assumption. 

Therefore, the paired t-test (Gosset “Student” 1908) was 



chosen for further analysis. It resulted in a test statistic of … 

and a p-value of …, meaning that a significant difference 

between both techniques can be concluded {no evidence for a 

significant difference between both techniques was found}.” 

Outcome: Wilcoxon signed rank test 

“The two techniques were compared using two paired 

samples of {add more details}. The differences between both 

samples were tested for normality, using the Shapiro-Wilk test 

(Shapiro and Wilk 1965), and concluding (at the 5% level) that 

normality could not be assumed. Therefore, the Wilcoxon 

signed rank test for paired samples (Wilcoxon 1945) was 

chosen for further analysis. It resulted in a test statistic of … 

and a p-value of …, meaning that a significant difference 

between both techniques can be concluded {no evidence for a 

significant difference between both techniques was found}.”    

VI. EVALUATION 

In order to vet the MeansTest components, we ran an 

independent evaluation.  The dependent variable measures 

output by TraceLab from a typical traceability experiment on 

one dataset with comparison of techniques (collection of MAP 

values for a traceability dataset for TF-IDF with stopwords 

removed and MAP values for TF-IDF on that same dataset 

without stopword removal) was provided to the Statistics 

department co-authors of this paper.  They independently 

analyzed the data using publicly available tools such as SAS 

(not R) and derived p-values (these are shown in Table 1).  We 

generated t and p-values using MeansTest, also shown in Table 

1.  As expected, the values are within rounding error of each 

other. The t-distribution in this context is symmetric around 

zero, so the difference in sign simply reflects a minor 

implementation difference between their tools and R. 

TABLE I.  EVALUATION RESULTS. 

  

Statistics 

Department values 

  

MeansTest 

values 

  

t 0.346225 -0.3462248 

p-value 0.7371 0.7371301 

 

VII. CONCLUSIONS AND FUTURE WORK 

As the traceability research community ushers in the era of 

TraceLab, it will be much easier to generate and try out new 

ideas.  It is incumbent upon researchers to practice responsible 

experimentation and use proper techniques in ensuring that the 

obtained results are statistically significant.  Toward that end, 

we present the MeansTest component as well as standard 

language that can be used in papers which employ this 

composite TraceLab component.  We evaluated our component 

and found that the values generated match those of SAS. 

In the future, we would like to expound on other statistical 

analyses such as power analysis and analysis of variance. As 

with the comparison of means, researchers performing other 

analyses of their results have many options readily available 

thanks to statistical software packages. Unfortunately, 

researchers often lack the required expertise to select the most 

appropriate option. While a fully automated solution to the 

selection process is not a panacea, we posit that such a solution 

can imitate the decisions of an expert in most applicable cases. 
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