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Abstract—This paper addresses the issues related to improving the overall quality of the dynamic candidate link generation for the
requirements tracing process for Verification and Validation and Independent Verification and Validation analysts. The contribution of
the paper is four-fold: We define goals for a tracing tool based on analyst responsibilities in the tracing process, we introduce several
new measures for validating that the goals have been satisfied, we implement analyst feedback in the tracing process, and we present
a prototype tool that we built, RETRO (REquirements TRacing On-target), to address these goals. We also present the results of a
study used to assess RETRO’s support of goals and goal elements that can be measured objectively.
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1 INTRODUCTION

THE fundamental purpose of Verification and Validation
(V&V) and Independent Verification and Validation
(IV&V) is to ensure that the right processes have been used
to build the right system. To that end, we must verify that
the approved processes and artifacts are guiding develop-
ment during each lifecycle phase as well as validate that all
requirements have been implemented at the end of the
lifecycle. A requirements traceability matrix (RTM) is a
prerequisite for both of these. Though Computer-Aided
Software Engineering tools such as DOORS [52], RDD-100
[27], and Rational RequisitePro [43] can assist, we have
found that, often, developers do not build the RTM to the
proper level of detail or at all. V&V and IV&V analysts are
faced with the time consuming, mind-numbing, person-
power intensive, error-prone task of “after the fact”
requirements tracing to build and maintain the RTM.
Examples of V&V /IV&V activities that can’t be undertaken
without an RTM include, but are not limited to: verification
that a design satisfies the requirements, verification that
code satisfies a design, validation that requirements have
been implemented and satisfied, criticality analysis, risk
assessment, change impact analysis, system level test
coverage analysis, and regression test selection. V&V /IV&V
can be viewed as the backbone of safety-critical, mission-
critical, and Critical-Catastrophic High Risk (CCHR) sys-
tems." Similarly, the RTM can be viewed as the backbone of

1. Considering that: 1) the CCHR system IV&V now routinely uses
manual approaches to generate candidate links for generating the RTM, and
2) our prior research [20] showed that our techniques outperformed the
techniques in use by a CCHR IV&V agent, we feel that our approach is at
least as appropriate for CCHR systems as the technologies presently in use.
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V&V/IV&V. We focus on “after the fact” requirements
tracing (hereafter referred to simply as “requirements
tracing”). Note that our techniques may be applied to any
pair of textual artifacts: high-level to low-level require-
ments, requirements to design, design to requirements,
design to test cases, etc. In this paper, we have tested our
techniques on high to low-level requirements and on
requirements to design.2

Requirements tracing consists of document parsing,
candidate link generation, candidate link evaluation, and
traceability analysis. As an example, consider requirements
in a high-level document, such as a System Specification,
being traced to elements in a lower level document, such as
a Software Requirement Specification. The most common
tracing approach in industry then proceeds as follows: After
the documents have been parsed and requirements have
been extracted from the two document levels, an analyst
reads each high-level requirement and low-level element
and assigns keywords to each. Keyword assignment is
either completely manual or aided by the use of search
functions from a word processor/spreadsheet. In some
cases, the keywords are chosen from an analyst-defined
ontology, created in advance. A keyword-matching algo-
rithm is then applied to build lists of low-level elements that
may potentially satisfy a given high-level requirement.
These are called candidate links. There are two commonly
accepted measures for evaluating candidate link lists: recall,
measuring the percentage of correct matches that were
found, and precision, measuring the percentage of found
matches that were correct.

In the process called candidate link evaluation, the analyst
reviews the candidate links and determines those that are
actual, or true links, and those that are not links (false-
positives, bad links). To achieve this, the analyst typically

2. As we discuss in Section 5.2, similar techniques have been applied by
other researchers [3], [4], [31] to tracing documentation to code. In addition,
in [55], we report on our experiments on tracing requirements to bug
reports.

Published by the IEEE Computer Society
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TABLE 1
The Requirements Tracing Process in a Nutshell

[ Step | Task

(a) identify each requirement

(b) assign a unique identifier to each requirement

(©) for each high level requirement, locate all matching low level requirements

(d) for each low level requirement, locate a parent requirement in the high level document

(e) determine if each high level requirement has been completely satisfied

® prepare a report that presents the traceability matrix

(2) prepare a summary report that expresses the level of traceability of the document pair

visually examines the text of the requirements, determines
the meanings of the requirements, compares the meanings,
and makes the decision based on whether (s)he believes that
the meanings are sufficiently close. This determination is
based on human judgment and bears all the advantages and
disadvantages that are associated with that. After tracing is
complete, the analyst generates reports of the high-level
requirements that do not have children and the low-level
elements that do not have parents (traceability analysis).

Current approaches to after-the-fact tracing have numer-
ous shortcomings: They require the analyst to perform
interactive searches for potential linking elements, they
require the analyst to assign keywords to all the elements in
both document levels prior to tracing, they return many
candidate links that are not correct, they fail to return
correct links, and they do not provide support for easily
retracing new versions of documents. To ensure require-
ment completion and to facilitate change impact assess-
ment, a method for easy “after-the-fact” requirements
tracing is needed. For ease of illustration, in this paper,
we will discuss the tracing of requirements to design. Note
that our methods and tool can be used to trace any textual
artifact to any other textual artifact.

Previously, we focused solely on the problem of
generating candidate links, discussed in [20]. Specifically,
we showed that information retrieval (IR) methods were
effective and efficient when used to generate candidate link
lists. Our focus then broadened to the overall requirements
tracing process [21]. A goal of this NASA-funded research is
to develop an efficient, effective tracing tool that makes the
best use of the analyst’s time and expertise (the ultimate
goal being the actual improvement of requirements tracing
analysis). To that end, this paper provides numerous
contributions:

l. we investigate the analyst responsibilities in per-
forming tracing,

2. we derive unique high-level analyst-oriented tool
goals from these,

3. we implement analyst feedback into the tracing
process,

4. we develop new measures for assessing the tool
goals, and

5. we present a prototype tool, RETRO (REquirements
TRacing On-target) and evaluate it with respect to
the goals.

This paper extends [21] by considering an additional

IR technique, Latent Semantic Indexing (LSI) [11], for

requirements tracing. In addition, we describe the result of
our experiments on two data sets: MODIS [30], [33], used
in [21], [20], and CM-1 [32], a new, larger data set. The
paper is organized as follows: Section 2 presents the goals
for an effective requirements tracing tool. Section 3
discusses our tool and how it satisfies the goals of
Section 2. Section 4 discusses the results obtained from
evaluation. Related work in requirements tracing and
analysis is presented in Section 5. Finally, Section 6 presents
conclusions and areas for future work.

2 GOALS FOR AN EFFECTIVE REQUIREMENTS
TRACING TooL

To set the stage for our work, we must first understand the
responsibilities of an analyst who has been tasked to
perform a requirements trace. In the description that
follows, we assume that the analyst is tasked with
performing a trace between two requirements documents.
Without loss of generality, we call one set of requirements
high-level and the other low-level and assume that tracing
has to be performed from the high-level document to the
low-level document. The process of requirements tracing is
described in Table 1.

Let us examine how automation may facilitate these
responsibilities. A tool could easily assist the analyst in the
identification and subsequent extraction and “tagging” of
requirements ((a), (b)). Similarly, generation of require-
ments traceability matrix reports and traceability summary
reports lends itself well to automation ((f), (g)). In fact, a
number of proprietary tools, such as SuperTracePlus (STP)
[19], [34], and commercial tools already address these items.

The remaining items are of greater interest and im-
portance to researchers and practitioners. Items (c)-(e)
conceivably require the analyst to examine every low-level
requirement for each high-level requirement. Even in a
small document pair that consists of 20 high-level require-
ments and 20 low-level requirements, an analyst might
have to examine 20 x 20 = 400 candidate links.

The goal of our research is to study the ways in which
requirements tracing can be automated. Items (c)-(e) are
prime candidates for automatation. However, because
analysts have critical responsibilities in the requirements
tracing process, its full automation cannot be achieved.
Indeed, it is the role of the analysts to evaluate candidate
links, make decisions on whether or not candidate links
should be accepted or rejected, make decisions on whether
or not to look for additional candidate links, make decisions
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Sample Capabilities for a Requirements Management Tool per INCOSE [29]

cation

6
TABLE 2
ID Capability
. Capturing Requirements/ldentificationCapturing
1.1 Input document enrichment / identifi

Using existing document informatio
identification of requirements, etc.

1.1.1 | Input document change/comparison
The ability to compare/contrast two
Capturing system element structure

2.2 Textual capture of system structure

21 Graphically capture system structure

n, aid the user in requirements analysis,

analysis
different versions of a source document

on whether or not a requirement has been satisfied
completely by its links, and decide if the tracing process
is complete. It is clear that a human analyst must have the
final say in all decisions. The key to successful automation
lies not in removing the human decision-maker from the
loop, but, rather, in introducing an automated agent that
takes care of the mundane, time-consuming parts of the
process and allows the analyst to concentrate on the parts
that really require human decision-making. What can be
automated, as shown in [20], is the generation of candidate
links to address items (c) and (d). With this in mind, we
move to the identification of the desirable attributes of an
effective tracing tool.

Most research in the area of requirements tracing has
focused on models of requirements tracing [40] or has
looked at recall and precision to assess the accuracy of the
applied linking algorithms [3], [31]. To our knowledge,
there has not been work published that details the goals for
an effective requirements tracing tool.> While prior work
has been done to define the capabilities required for a
requirements management tool [29], these capabilities (see
Table 2) are not appropriate for our tracing tool. The
management tool requirements are very far reaching,
whereas we are narrowly focused on tracing and even
more narrowly focused on dynamic trace generation. In
addition to specifying such goals, we provide a validation
mechanism for each goal and then, in Sections 3 and 4,
demonstrate that our tracing tool satisfies the goals we have
addressed to date.

First, we define a requirements tracing tool as a special-
purpose software that takes as input two or more docu-
ments in the project document hierarchy (without loss of
generality, we assume that individual requirements in these
documents have been successfully defined and are easily
extractable) and outputs a traceability matrix that is a
mapping between the requirements of the input documents.
In the rest of the paper, we concentrate on the process of
forward tracing for a pair of documents—most other
requirements tracing tasks can be reduced to this problem.

From the perspective of a development manager or a
safety manager (in the case of a safety-critical system), the
most important attribute that a requirements tracing tool
can possess is that its final results are believable and can be
trusted. Similarly, the analysts who use the tool should have
confidence in the candidate link lists provided by the

3. Besides our work in [21].

software (addressing items (c) and (d)). Lack of this quality
in a tool might result in an analyst wasting time by
searching for additional candidate links. We refer to this
attribute as “believability” and it constitutes the first goal.

Goal 1: “Believability.” The requirements tracing tool
shall generate candidate links and shall solicit analyst
feedback and shall regenerate candidate links based on the
feedback such that the final trace shall very accurately
reflect the theoretical “true trace.” Believability is consti-
tuted of three subelements, discussed below: accuracy,
scalability, and utility.

Accuracy. The extent to which a requirements tracing
tool returns all correct links and the extent to which the tool
does not return incorrect links.

Scalability. The extent to which the requirements tracing
tool is able to achieve accuracy for “small” tracesets as well
as “large” tracesets. It has been argued that one obstacle to
the transfer of research results to industry is the lack of
realism of studies used in controlled experiments, specifi-
cally, that these studies are too small, or “toy”-like [47].
Thus, in our opinion, the ability of a requirements tool to
scale its performance to the size of the tracing problem
contributes to its believability.

In this context, we define a “small” traceset to constitute
3,000 combinatorial links or less. For example, a traceset
consisting of 20 high-level requirements and 50 low-level
requirements would have 20 x 50 = 1,000 combinatorial
links. Any traceset with more than 3,000 combinatorial links
is considered large. We set this “line” for large tracesets
based on the 16+ years of industry experience of the first
author® and on proprietary information on how many hours
it takes to trace sets of varying sizes. We offer this as a
starting point for discussion with other researchers and
practitioners.

Utility. The extent to which an analyst believes the tool
has helped to achieve good trace results. If the analyst has
(justified) confidence in the accuracy and scalability of the

4. This experience includes: manual tracing, on-going comprehensive
assessement of existing tracing technologies and tools, the specification of
requirements for a proprietary tracing tool in the mid-80s, oversight of the
development of the tool, testing, and use of the tool to trace mutliple textual
artifacts (including source code) for large mission and/or safety-critical
projects including: instrumentation and control systems for nuclear power
plants, weapon systems, and manned and unmanned flight systems; the
training of and managing of analysts performing tracing using tools (and
manually) in the previous organization of the first author of more than 200
analysts managed by her; the design and execution of industrial tracing
experiments ranging back to 1991; and academic work on traceability, using
industry data sets, for the past five years.
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tool, the tool possesses utility for the analyst. In addition to
analyst belief about accuracy and scalability, other items
can impact utility. This is a very subjective item and we are
still in the process of elucidating its subelements. Thus far,
we have defined Operability, Process Enforcement, and
Usefulness. Operability is the capability of the software
product to enable the user to operate and control it [7].
Process Enforcement refers to the tool implementing tracing
in such a way that the analyst is guided through the
process.

We also consider Usefulness to be a subelement. At this
point, we see this as having a subjective and objective
aspect. Subjectively, the user interface contributes greatly to
how convenient the tool is to use. Objectively, the tool must
generate benefits that convince the analyst that it is better to
use the tool than not to use it. For example, if the tool can
greatly reduce the amount of decisions an analyst must
make, it has generated a savings in effort. This should
positively influence the analyst’s opinion about usefulness.

Validation mechanism. The standard measures of accuracy
are recall and precision, mentioned in Section 1 and defined
formally in Section 4.2. Accuracy can be measured objec-
tively, but only when we have the theoretical “true trace”
(i.e., the actual traceability matrix) available. Even when we
do not have such an “answer set” a priori, we can build an
RTM using the tool, capturing the candidate links returned
at each stage. Then, we can compare the candidate links
supplied by the tool at each stage to the final RTM (treating
it as the answer set).

Precision and recall quantify accuracy in two different,
complimentary, ways. In an ideal setting, a list of candidate
links is accurate when it contains all the high-low-level
requirements pairs that trace to each other and does not
contain any extra pairs. Recall measures the degree to
which the first condition is met, while precision looks at the
second. We note a certain asymmetry between the two
measures. In general, an imperfection in the list of
candidate links can come from two sources: an error of
commission—a false positive link was added to the list
(Type II error)—or an error of omission—a true link was not
recognized (Type I error). Errors of commission decrease
precision, while errors of omission decrease both recall and
precision, but, generally, have a more drastic effect on
recall. As a rule, human analysts are much better in
detecting errors of commission (examining a given link
and determining whether it belongs to the answer set) than
they are in detecting (and rectifying) errors of omission. The
latter requires understanding that the current set of links is
insufficient in some way, followed by a thorough search
through the low-level document for missing links. Thus,
candidate link lists with very high recall but lower precision
are preferable to the candidate link lists with high precision
and lower recall. In Section 4.2, we specify precisely what
we mean by “excellent,” “good,” and “acceptable” precision
and recall.

For scalability, we must examine the tool’s results for
both small and large tracesets to determine that the
accuracy has not been significantly degraded. Validation
of utility requires the study of the users as much as it
requires the study of the methods. In addition, we must first

establish accuracy and scalability before progressing to the
study of the users, thus ensuring that the tool performs in
such a way that there is a basis for analyst confidence. The
study of users is left for further research [25], [26].

Goal 2: “Discernability.” The requirements tracing tool
shall generate candidate links and display their similarity
measures in such a way to make it easy for the analyst to
discern true links (from the theoretical “true trace”) from
false links (candidate links that are not really links).

Validation mechanism. There are several aspects to this
goal. In general, we want to ensure that the software
communicates information (such as requirement text),
process flow (such as what to do next), and results in a
manner that facilitates the tracing process. We refer to this
as communicability. In addition, we want to ensure that, as
the stages of tracing proceed, good links (true links) rise to
the top of the candidate link list and that bad links (false
links) fall to the bottom. And, we want to ensure that the
similarity measures given for candidate links reflect the
“cut off” line between true and false links. To that end, we
define objective measures for all the items above except
communicability. “Good links rising” and “bad links
sinking” are measured using Lag, defined (informally) as
the average number of false positives with higher relevance
(a value between 0 and 1 where 1 indicates the highest
possible similarity) than a true link in a list of candidate
links. The existence of a cutoff is studied using different
filtering techniques on the candidate link lists. These
measures are formally defined in Section 4.2.

Goal 3: “Endurability.” The requirements tracing tool
shall generate candidate links and shall solicit analyst
feedback and shall regenerate candidate links based on the
feedback such that the process of requirements tracing is
not arduous.

Validation mechanism. Part of Endurability can be mea-
sured objectively by examining the time it takes to complete
a tracing project using the tool. In addition, the analyst’s
effort can be measured by the number of mental compar-
isons (s)he must make. In Section 4.2, we propose a measure
called Selectivity to capture this. At the same time,
Endurability also refers to subjective satisfaction of the
analyst with the tool and requires subjective measures and a
separate experimental design. This study is left for future
research.

2.1 Study of Methods versus Study of Users

The goal of our research is to improve requirements tracing
during the IV&V process by using IR methods for candidate
link generation and analysis. Our intention is not to replace
the human analysts, but rather to provide better tools for
their use. As such, our concern here is dual. First, we must
ensure that the tools we build are capable of providing accurate
results fast. However, because the final result of the IV&V
tracing process must come from a human analyst, we are
also interested in what human analysts do with the results
provided by our tools.

This duality of interest is directly reflected in the high-
level goals presented above. Indeed, all three goals,
believability, discernability, and endurability, have compo-
nents directly relevant to each of the two interests. We can
judge the ability of the software (the methods implemented



in it) to deliver results by: examining its accuracy and
scalability, by measuring its ability to eventually separate
true links from false positives, and by ensuring that, no
matter how large a tracing task is, only a small fraction of all
possible links are being examined. However, by itself, this
does not guarantee that a human analyst working with the
tool will make the right decisions and produce a correct
final trace.

To accommodate these two complementary interests, we
conduct our research in two directions. In this paper, we
study the applicability of IR methods to requirements
tracing. The primary goal of this paper is to show that these
methods are capable of providing good candidate link lists.

We study analyst interaction with tracing software
separately. This latter study is predicated upon building
automated tools that provide good candidate link lists
(otherwise, the tracing process is in danger of turning into a
garbage in-garbage out affair). At present, we have
conducted a pilot experiment involving three analysts that
showed that the issue of analyst interaction with software
needs to be studied in more detail. The preliminary report
and an in-depth discussion of this issue can be found in
[25], [26].

3 EFFECTIVE REQUIREMENTS TRACING WITH
RETRO

3.1 Why Use Information Retrieval?

The problem of requirements tracing boils down to
determining if each pair of requirements from high and
low-level requirements documents are “similar.” Stated as
such, requirements tracing bears a striking similarity to the
standard problem of Information Retrieval (IR): Given a
document collection and a query, determine those docu-
ments from the collection that are relevant to the query. In
the forward tracing scenario, high-level requirements play
the role of queries, while the “document collection” is made
up of low-level requirements (these roles are switched if
back-tracing is desired). The key to understanding whether
IR methods can aid requirements tracing lies in examining
the concept of requirement “similarity.” This concept is
used by the analysts to determine the trace. We must see if
requirements similarity can be modeled, or at least
approximated, by the document relevance notions on which
different IR algorithms rely.

The major difference in the similarity concepts used by
analysts and the measures used in IR algorithms is that
human analysts are not limited in their decisions by purely
arithmetical considerations. A human analyst can use any
tool available in her arsenal to determine the trace and that
may include “hunches,” jumping to conclusions, and/or
ignoring assignments prescribed by any specific methodol-
ogy. Such diversity of sources for human decision-making
can be both a blessing and a bane to the requirements
tracing process. On one hand, it may lead to discovery of
hard-to-find matches between the requirements. On the
other hand, human analysts do make errors in their work.
These errors may be explicit, the analyst discards correct
links and keeps incorrect ones, and implicit, the analyst
does not notice some of the true links between the
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documents. Similarity (relevance) measures computed by
IR algorithms are not prone to errors in judgment. But, they
may fail to yield connections that humans might notice
despite differences in text.

Even taking this observation into account, there is still
enough evidence to suggest that IR methods are applicable.
Indeed, the actual procedures employed by an IR algorithm in
RETRO and by the analyst working with (for example) the
STP tool [19], [34] are very similar. In both cases, the lists of
requirements from both document levels are scanned and, for
each requirement, a representation based on its text is chosen.
After that, in both instances, matching is done automatically
and the analyst then inspects the candidate links.

3.2 RETRO

In contrast with such comprehensive requirements manage-
ment tools as DOORS [52], RETRO (REquirements TRacing
On-target) is a special-purpose tool, designed exclusively
for requirements tracing. It can be used as a standalone tool
to discover traceability matrices. It can also be used in
conjunction with other project management software: The
requirements tracing information is exported in a simple,
easy-to-parse XML form. The overall look of the RETRO
Graphical User Interface (GUI) (Win32 port) is shown in
Fig. 1.

At the heart of RETRO lies the IR toolbox (C++): a
collection of implementations of IR methods adapted for the
purposes of the requirements tracing task. Methods from
this toolbox are accessed from the GUI block (Java) to parse
and analyze the incoming requirements documents and
construct relevance judgments. The Filtering/Analysis
component (C++) of RETRO takes in the list of candidate
links constructed by any of the toolbox methods and
prepares a list to be shown to the analyst. This preparation
may involve the application of some cleaning, filtering, and
other techniques. The GUI of RETRO guides the entire
requirements tracing process, from setting up a specific
project to evaluating the candidate link lists.

At the top of the screen, the analyst sees the list of high-
level requirements (left) and the list of current candidate
links for the selected high-level requirement with relevance
judgments (right). Below, the text of the current pair is
displayed. In this case, a software requirement specification
(SRS) requirement is shown in the High-level text window
and a design specification element is shown in the Low-
level text window. At the bottom, there are controls
allowing the analyst to make a decision on whether the
candidate link under consideration is, indeed, a true link.?
This information is accumulated and, upon analyst request,
is fed into the feedback processing module (C++). The
module takes the results of analyst decisions and updates
the candidate link discovery process (discussed below in
Section 3.3) consistent with the changes. If needed, the IR
method is rerun and the requirements tracing process
proceeds into the next iteration.

5. The current version of RETRO also has a browse mode in which the
analyst can simply read requirements from both high and low-level
documents and make decisions to add any pair of requirements to the trace.
This mode is not shown in Fig. 1 and had not been used in the experiments.
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Low Level File Names

Low Level Text

;;;;;;

Tracing Completed

“ Each software process shall trap
and properly process all exceptions
that may produce an abnormal
termination and report all such
events using the SDPTK error
message functions.”

MODIS [33]

“The DPU-1553 CSC shall address

hardware modules as defined in

document 1400, Company X

Specification for the Company X

Communication/Memory Module.”
CM-1[32]

Fig. 1. A screenshot of RETRO and sample requirements for the MODIS
and CM-1 data sets.

3.3 Information Retrieval Methods in RETRO

The IR toolbox of RETRO implements a variety of methods
for determining requirement similarity. For this study, we
have used two IR algorithms implemented by us previously
[20], Tf-Idf vector retrieval and vector retrieval with a simple
thesaurus, and one newly implemented method, Latent
Semantic Indexing (LSI) [11]. Tf-Idf-based methods were
selected for their simplicity and efficiency. LSI is a
dimensionality-reduction method, which allows one to
capture the similarity of underlying concepts, rather than
simple keyword matches. For traditional Information
Retrieval tasks that involve collections of millions of
documents, LSI is inefficient, but requirements tracing tasks
are much smaller. LSI has been successfully applied by
Marcus and Maletic [31] to tracing of code to requirements;
we investigate here whether it also holds for requirements-
to-requirements traceability. To process user feedback, we
have used the Standard Rochio [5] method for the vector
models and a variation of it for the LSI [11]. The methods
used are briefly described below.

3.3.1 Tt-Idf Retrieval
Let V = {ki,...,kn} be the vocabulary (list of keywords) of
a given document collection. Then, a vector model of a
document d is a vector (wy,...,wy) of keyword weights,
where w; is computed as w; = tfi(d) - idf;.

Here, tf;(d) is the so-called term frequency: The (usually
normalized) frequency of keyword k; in the document d
and idf;, called inverse document frequency, is computed as

idf; = logy(7;), where n is the number of documents in the
collection and df; is the number of documents in which
keyword k; occurs. Given a document vector d=
(wi,...,wy) and a similarly computed query vector
q=(q,--.,qn), the similarity between d and ¢ is defined
as the cosine of the angle between the vectors:

VL ut S i =172

sim(d, q) = cos(d, q) =

3.3.2 Tf-idf + Simple Thesaurus

The second method used in [20] extends the TF-IDF model
with a simple thesaurus of terms and key phrases. From our
prior industry experience, we knew that many software
engineering specification pairs (e.g., a design document and
a requirement specification) are written using different
terminology, acronyms, and technical “lingo.” We knew
that a method such as TF-IDF that can only identify
relevance based on matching keywords would suffer due to
this. Hence, we decided to adopt the thesaurus approach to
assistin matching elements that have been written differently
from one specification to those from another specification. A
simple thesaurus T'is a set of triples (¢, ¢, &), where t and ¢’ are
matching thesaurus terms (keywords or phrases) and « is the
similarity coefficient between them. The vector model is
augmented to account for thesaurus matches as follows: First,
all thesaurus terms that are not keywords (i.e., thesaurus
terms that consist of more than one keyword) are added as
separate keywords to the document collection vocabulary.
Given a thesaurus T' = {(k;, k;, a;;) }, and document/query
vectors d = (wy, ..., wy) and ¢ = (qi, ..., qn), the similarity
between d and ¢ is computed as:

sim(d, q) =
N
Dimi Wi i+ Xy e @i (Wi - GG+ wj - q5)

N N
>in1 w? i qz‘2

3.3.3 Latent Semantic Indexing

We wanted to examine a more sophisticated technique. We
selected LSI because we knew that our small data sets (as
compared to typical IR data sets) would not create the
performance issues that one may see with larger data sets.
Latent Semantic Indexing (LSI) [11] reduces the dimension-
ality of the document-by-term matrix used in IR by
replacing it with a matrix of orthogonal components
obtained as a result of Singular Value Decomposition
(SVD) [11] of the original matrix X with dimensions
M x N: X =TSDT.

Here, S is a diagonal matrix of eigenvalues of X” X (also
called singular values) and T and D are M x rank(X) and
rank(X) x N matrices with orthonormal columns. Dimen-
sionality reduction is achieved by replacing S with a matrix
Sy, for some k < rank(X), which consists of the first
k diagonal elements of S. Matrix X’ = T'S;,D” is then used
in place of X. In our experiments, matrix X was constructed
out of both high-level and low-level requirements together,
in order to capture the underlying structure that unifies
both requirements documents.
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3.3.4 Incorporating Relevance Feedback

In [20], we have considered the application of IR methods to
the tracing problem in which the IR method was run once
and its output was measured for accuracy (recall and
precision). Yet, we observe that, when tracing is a part of the
V&V or IV&V process, the analyst performing the task must
inspect the output of the IR method and render a “link”/
“no link” decision for each candidate link found.® Tt is
possible, however, to provide some help to the analyst in
the process of inspection by using decisions already
rendered by the analyst to (potentially!): 1) Automatically
fix some errors of commission, 2) automatically fix some
errors of omission, and 3) restructure candidate link lists in
a way that true links are visited earlier. This procedure is
called relevance feedback analysis.

Relevance feedback analysis is a technique to utilize user
input to improve the performance of the retrieval algo-
rithms. Relevance feedback techniques for TF-IDF methods
adjust the keyword weights of query vectors according to
the relevant and irrelevant documents found for them, as
supplied by the analyst. We selected this because we knew
that tracing is a highly interactive, repetitive process, where
users examine various element pairs and decide if they are
related. We felt that an ability to capture the analyst’s
opinion and use it to improve the results shown to them
would be very useful. We define the process next. Let ¢ be a
query vector and D, be a list of document vectors returned
by some IR method given q. Further, assume that D has two
subsets: D, of size R of documents relevant to g and D;,,. of
size S of irrelevant documents that have been indicated by
the analyst. Note that D, and D;,, are disjoint, but do not
necessarily cover the entire set D,. We use the Standard
Rochio [5] feedback processing method, which modifies the
query vector for the next iteration of the IR procedure:

—(Z d > .
(S dLgD:m '

Intuitively, query q is adjusted by adding to its vector a
vector consisting of the document vectors identified as
relevant and subtracting from it the sum of all document
vectors identified as false-positives. The first adjustment is
designed to potentially increase recall. The second adjust-
ment can potentially increase precision. The constants
a, 8,7 in the formulas above can be adjusted in order to
emphasize positive or negative feedback as well as the
importance of the original query vector. Once the query
vectors have been recomputed, the selected IR algorithm is
rerun with the modified query vectors. This cycle can be
repeated until the analyst is satisfied with the results.

Gnew = @+ @+ %Zdj

d;eD,

4 EVALUATION

This section presents an overview of the experiment
conducted and measures collected as well as a detailed
look at the experiments by data set.

6. Some decisions might be rendered in bulk, e.g., excluding all links
with relevance less than 0.025. The analyst also has the option of conducting
a manual search for missing links.
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4.1 Data Sets Used

Our experiments have been conducted using two data sets:
a small MODIS data set and a large CM-1 data set” The
MODIS data set has been constructed from two publically
available high-level requirements [33] and low-level re-
quirements [30] documents for NASA’s Moderate Resolu-
tion Imaging Spectrometer (MODIS). From these two
documents, we have selected 19 high-level and 49 low-
level elements. A typical requirement (high or low-level) is
one to two sentences in length. The Flesch Reading Ease of a
typical MODIS requirement is 32.1 and the Flesch-Kincaid
Grade Level is 12 [15], [16]. These measures examine the
relative “complexity” of the text. A sample high-level
requirement is shown in Fig. 1. The “theoretical true trace,”
i.e., the list of all true links in the data set, has been constructed
manually and verified. The list includes 41 links.

The CM-1 data set consists of a complete requirements
(high-level) document and a complete design (low-level)
document for a NASA scientific instrument. The project is
written in C with approximately 20 KSLOC. It was made
available by the Metrics Data Program (MDP) [32]. The text
of the documents has been altered by NASA prior to public
release in order to hide the identity of the instrument. A
typical requirement is one to two sentences in length (see
Fig. 1). A typical design element is several paragraphs in
length, with paragraphs averaging four to five sentences in
length. The Flesch Reading Ease of a typical CM-1
requirement is 40.5 and the Flesch-Kincaid Grade Level is
12 [15], [16].

The CM-1 data set has 235 high-level requirements,
220 design elements, and the final traceability matrix
(theoretical true trace) contains 361 true links.

We performed a rigorous manual verification of the true
trace of both data sets. For MODIS, we started with the
RTM provided in the high-level MODIS requirement
specification. Two senior analysts then manually verified
the trace. For CM-1, we used four junior analysts to
manually verify a trace that was generated by RETRO.
After they completed their task, we had a senior analyst
verify that trace. He consulted with a second analyst. At the
second stage, the analysts worked with the text of the
requirements and design documents and the traces gener-
ated by junior analysts. The senior analysts have very
carefully studied both documents and the trace for both
errors of commission and errors of omission. Our assess-
ment of the process leads us to believe that, because of
significant manual tracing effort undertaken at the second
stage of the process, any potential bias introduced by the
use of RETRO to jump-start the tracing process was
remedied at the second stage.

For both data sets, when we encountered “borderline”
cases (might be links, might not be links, depending on
interpretation), we added it as a link in the traceset. In that
inclusive way, we err on the safe side. As we mentioned
above, correcting errors of omission is harder than correct-
ing errors of commission. Thus, we opted to have the
“borderline” links visible in the answer set, rather than
“hidden” outside of it.

7. The MODIS data set is available on the Software Engineering
Empirical Website (SEEWEB) [35] and the Promise Website [39], [51]. The
CM-1 data set is also available on the Promise Website [39], [51].
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4.2 Measures Used

The key measures of success of any Information Retrieval
task are recall and precision. Their weighted harmonic mean,
called f-measure, is used when a single measure is needed to
describe the accuracy. In addition, in [21], we have
introduced a number of so-called secondary measures that
allow us to track progress of the feedback process even
when precision and recall numbers do not change sig-
nificantly. In this section, we briefly introduce all measures
used in the tracing tests and discuss their relationships with
different requirements from Section 2.

Let the requirements tracing project consist of a set H of a
high-level requirements, |H| = M, and a set of low-level
design elements (requirements), D, of size N. For a given
high-level requirement g, let there be R, true links between
g and the low-level elements. Let an IR algorithm return n,
candidate links, out of which r, are true.

Recall. Recall measures the percentage of true links
found by IR algorithms, i.e., given a requirement g, the
recall for this requirement is: recall = ;T’l Our main measure
will be overall recall of the algorithm on all requirements,
i.e., the percentage of all true links recovered by an
algorithm:

quH Tq
ZQGH R‘I

For a trace-focused IR algorithm to perform well, overall
recall must be high.

Precision. Precision measures the accuracy of the
returned candidate link list. Given a requirement g, the
precision is precision = .

. . s 5 . P
Our main precision measure is the overall precision for
the entire requirements document:

ZqEH Tq

qEH g

recall =

precision =

F-measure. F-measure is a harmonic mean of precision
and recall. Achieving high precision and high recall is a
balancing act (as precision increases, recall tends to
decrease and vice versa) and f-measure represents the
balance—the max of f-measure indicates the “best” achiev-
able combination of precision and recall. F-measure can be
weighted—tilting the balance toward one of its two
components. A weighted f-measure is computed as follows:

f= 1+0
i —
recall ' precision
Here, b=1 means recall and precision are equally
important, b < 1 means precision is more important, and
b > 1 means recall is more important.

Selectivity. In general, when performing a requirements
tracing task manually, an analyst has to vet M x N
candidate links, i.e., perform an exhaustive search. Selec-
tivity measures the improvement of an IR algorithm over
this number:

ZqE'H g

Selectim'ty = ﬂ .

TABLE 3
Classification of Results and Relationship between Measures
and Requirements

Measure | Acceptable | Good Excellent

Recall 60% — 69% | 70% — 79% | 80% — 100%

Precision | 20% - 29% 30 — 49% 50% — 100%

Lag 3-4 2—3 0—2
Requirement Measures

Believability::Accuracy
Believability::Scalability

precision, recall, f-measure
precision, recall, f-measure

Believability:: Utility selectivity
Discernability Lag
Endurability selectivity

The lower the value of selectivity, the fewer links that a
human analyst needs to examine.”

Lag. Lag is a nonparametric measure for evaluating the
level of separation between true links and false positives in
a candidate link list.

Definition 1. Let q be a requirement and (gq,d) be a true link
returned by an IR method in the list of candidate links for gq.
The Lag of the link (q,d), denoted Lag(q,d), is the number of
false positive links (g, d') that have higher relevance score
than (q, d).

Informally, we compute the Lag of a true link by counting
the number of false positives above it in the list of candidate
links. Let C be the set of all candidate links returned for all
requirements and let 7" and F be the sets of true links and
false positives, respectively: T'U F' = C. The total Lag of C'is
the average of the Lags of the true links in C:

Lag specifies, on average, how many false positives are
found in the candidate link lists above true links. The lower
the Lag, the higher the separation between true links and
false positives.

The specifics of the requirements tracing process requires
us to establish clear boundaries of quality of methods based
on the values of the measures. In Table 3, we show the values
of three of our measures, precision, recall, and Lag, that are
deemed acceptable, good, and excellent. Note that these values
relate to the evaluation of the quality of the candidate link lists
produced by the automated methods. We do not apply such
criteria to selectivity because, by itself, it is not a measure of
quality of the method. These settings have been derived from
the industrial experience of the first author in performing and
validating many traces. This required much work with RTMs
of varying quality levels as well as candidate link lists of
varying quality levels that were generated using manual and
semi-automated means. The quality levels have been
generated to represent varying levels of analyst effort that is
required. We estimate that candidate link lists with excellent
recall and precision require relatively little effort on an

8. The term “selectivity” owes its name to a similar measure from
database theory. There, given a database query, its selectivity is the
percentage of rows in a table that are retrieved [50].
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analyst’s part, whereas nonacceptable results mean that the
analyst must spend so much time that they may as well
perform the work manually. Note that this is our first attempt
to “draw a line in the sand” and we welcome feedback from
other researchers and practitoners. In particular, the desire to
find empirically where the lines are drawn is one of the main
motivations behind our planned study of the users [25], [26].

In Section 2, a set of high-level goals for a tracing tool
was presented. We also defined measures for evaluating
IR algorithms and the behavior of the tool. The measures
can be used to help us evaluate RETRO’s satisfaction, or
lack thereof, of each of the high-level goals. Table 3 depicts
how the measures relate to the high-level goals. Recall,
precision, and f-measure assist with the evaluation of the
accuracy and scalability subrequirements of believability.
Lag assists solely with assessment of the discernability
requirement. Discernability deals with the analyst being
able to differentiate easily between relevant and irrelevant
candidate links. By measuring the number of false positive
candidate links above true links in candidate link lists, Lag
also assists with evaluating discernability. Finally, selectiv-
ity assists us in evaluating a portion of the endurability and
believability goals. If we reduce the amount of work that an
analyst needs to do in order to complete a trace, we assist
with their ability to “endure” the task. Note that we want
low selectivity in addition to high recall.

4.3 Execution of Experiments

We have conducted a battery of experiments, described in
this section, on both MODIS and CM-1 data sets. The main
goals of our experiments were: 1) determine whether
RETRO is capable of producing accurate tracing results,
2) determine whether RETRO is capable of separating true
links from false positives as a result of a feedback process,
and 3) determine if RETRO scales well.

Our experiments were conducted in the following
manner: First, the lists of high and low-level elements were
extracted from the source documents and put in a format
readable by RETRO.” After that, both high and low-level
elements were parsed and stemmed using Porter’s algo-
rithm [5]. In addition, common stopwords such as “and,”
“a,” “the,” etc. were removed. The resulting keyword
stream was then passed to the specific IR method for the
purpose of creating vectors of term weights. This completed
the preparation stage.

Once the vectors were created, the selected IR method
was invoked to produce lists of candidate links for each
high-level element. This list was then passed to the feedback
simulator. The feedback simulator was provided with a copy
of the answer set and tasked with simulating ideal analyst
feedback, i.e., the feedback provided by the simulator was
always correct. We studied four different feedback strategies:
Top 1, Top 2, Top 3, and Top 4. Using strategy Top i, the
feedback simulator examined, for each high-level require-
ment, the top i unexamined candidate links in the list and
specified whether each examined link was a true link or a
false positive. This information, encoded in XML, was

9. In the experiments, each requirement/design element was stored in a
separate file, with filename serving as its unique identifier; at present,
RETRO works with other formats as well.
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passed to the feedback processor that updated the query
vectors and passed control back to the IR method for the
next iteration.

Each experiment was run for eight iterations. For
each of the data sets, we tested four methods: TF-IDF,
TEF-IDF+Thesaurus, LSI, and LSI+Thesaurus, each with all
four feedback strategies. For LSI and LSI+Thesaurus, we
also altered the number of dimensions in the reduced
matrix. For MODIS, all results shown are for 10 dimen-
sions. For CM-1, all results are shown for 100 (out of 455
possible) dimensions. At each iteration, we also produced
lists of candidate links with relevance higher than one of
the predefined levels: 0.05, 0.1, 0.15, 0.2, and 0.25 (this
process is called “filtering”).

The results from each iteration of each test run were
archived and later run through our analysis tool (part of the
RETRO toolkit), which compared the candidate link lists to
the answer set and computed precision, recall, f-measure,
selectivity, Lag, and effects of filtering.

Below, we report on the most interesting results obtained
in our experiments. In particular, we limit our reporting to
Top 2 feedback strategy. In our experiments, we found it to
be a good balance of quality of results and amount of
feedback per iteration. Results for Top 1 strategy were
significantly worse, while results for Top 3 tended to be
very similar to those of Top 2, occasionally reaching the
same precision/recall numbers one or two iterations earlier.

4.4 Analysis of Experimental Results

Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9
show the results of some of our experiments. In Fig. 2 and
Fig. 3, we show the recall versus precision graphs for four
methods running on the MODIS data set. We observe that
all four methods achieve good recall and precision
numbers, with TF-IDF+Thesaurus showing the best combi-
nation of precision and recall at filter levels of 0.1 and 0.15.
It should be noted that all filtering levels exhibit similar
behavior, with a slow increase in recall that picks up and a
steady increase in precision. Overall, this means that the use
of feedback resulted in some errors of omission being fixed
automatically (increased recall), as well as many false
positives being automatically excluded from the candidate
link lists (increased precision). LSI appears to underperform
as compared to TF-IDF-based methods.

Results for the CM-1 data set are shown in Fig. 4.
Thesaurus-based methods produced almost identical results
to their base methods, so we show only the recall versus
precision plots for TE-IDF and LSI. Both methods appear to
achieve similar recall levels for similar filters, but TF-IDF
exhibits higher precision (best result of 0.55 versus 0.38).

Fig. 5 and Fig. 6 plot the f-measure for the MODIS and
CM-1 data sets. We elected to use the value b =2 for the
f-measure weighting parameter, meaning that we consider
recall to be twice as important as precision.'” In Fig. 5, we see
the change in f-measure during the feedback process at each
filter level for the MODIS data set. For TF-IDF (Fig. 5a),
f-measure starts between 20 and 30 percent at all filter levels,
and gradually improves to the vicinity of 60-70 percent for all

10. b =2 is a standard value for the case when recall is valued higher
than precision.
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Effects of Filtering: Recall vs. Precision trajectories
1 MODIS dataset, TF-IDF, Std. Rochio feedback, Top 2
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Fig 2. Results for MODIS data set, (a) TF-IDF and (b) TF-IDF+Thesaurus, Top 2 feedback.

Effects of Filtering: Recall vs. Precision
MODIS Dataset, LSI, 10 dimensions, Std. Rochio feedback, Top 2

Effects of Filtering: Recall vs. Precision
MODIS dataset, LSI, 10 dimensions, Std. Rochio, Top 2

r T 1
09t i - No Filter J 0.9t '
‘ Filter = 0.05
0.8l Filter=0.1 | 0.8}
Filter = 0.15
0.7+ Filter = 0.2 4 0.7+
— 0.6f 1 =06f
So So ’
bos .5 bid .5
o o4l E O o4l
0.3+ R 0.3+ No Filter
===~ Filter = 0.05
0.2r 4 0.2 --=-- Filter=0.1
_ & Filter=0.15
0.1+ R 0.1r Filter = 0.2
0 ‘ . ‘ . 0 ‘ . ‘ :
0 02 04 06 08 1 0 0.2 04 06 08
Precision Precision
(a) (b)

Fig. 3. Results for MODIS data set, (a) LS| and (b) LSI+Thesaurus, Top 2 feedback.
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Fig. 4. Results for CM-1 data set, (a) TF-IDF and (b) LSI, Top 2 feedback.

nonzero filters. For TF-IDF + Thesaurus (Fig. 5b), f-measure
behaves even better, starting at 35-40 percent and ending
around 78-86 percent for nonzero filters. F-measure for
TF-IDF for the CM-1 data set (Fig. 6a) exhibits different
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behavior. For the nonfiltered case, as well as for filters of 0.05
and 0.1, it shows no significant change from its starting value
(~ 8percent, 19 percent, and 33 percent, respectively). For the
filters of 0.15 and 0.2, the f-measure improves throughout the
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Fig. 5. F-measure, MODIS data set, (a) TF-IDF and (b) TF-IDF+Thesaurus, Top 2 feedback.
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Fig. 7. Precision-Recall footprints, (a) MODIS and (b) CM-1 data sets, Top 2 feedback.

feedback process, eventually overtaking 50 percent. Fig. 6b  graphs show the recall-precision “footprint” of RETRO for
compares the behavior of the f-measure for different methods  (a) the MODIS and (b) the CM-1 (b) data sets using Top 2
over the MODIS and CM-1 data sets for the filter of 0.1. feedback strategy. The “footprint” is a scatterplot of all

Fig. 7 summarizes our findings about the accuracy of precision-recall values achievable by any method/filter/
RETRO with respect to the two data sets studied. The iteration combination (we show all four methods for
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MODIS for filter values of 0-0.2 and TF-IDF and LSI for CM-
1 for filter values of 0-0.4). The lines on the plot show the
acceptable, good, and excellent boundaries for precision
and recall as specified in Table 3. We can see that RETRO
achieves excellent combinations of precision and recall for
MODIS and, in general, a multiple method/filter combina-
tion allows us to obtain good or better accuracy. At the
same time, we see that RETRO performs only marginally
well for CM-1. Acceptable precision-recall have been
achieved and there are a few points in the good recall-
acceptable precision range. However, there is only a single
point in the acceptable recall-good precision range. The plot
very clearly shows that RETRO routinely achieves high
recall at low precision or high precision at mediocre recall.

While RETRO could not produce good recall-good
precision candidate link lists for the CM-1 data set, we
can evaluate its performance using selectivity instead of
precision. Fig. 9 shows recall-versus-selectivity plots for the
TF-IDF method over (a) the MODIS and (b) the CM-1 data

Effects of Filtering: recall vs selectivity trajectories
MODIS dataset, TF-IDF, Std. Rochio feedback, Top 2
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sets. We note here that while RETRO could not construct
good precision-good recall lists on CM-1, it successfully
constructs excellent recall-low selectivity lists. Indeed, at a
filter level of 0.1, we can obtain recall of around 85 percent
with selectivity around 5-6 percent.

Finally, Fig. 8 documents the changes in Lag for various
method/filter combinations for both the CM-1 and MODIS
data sets. We see that for the majority of plotted runs, Lag
tends to decrease to the level of 0-2. Lag behavior improves
when filtering is applied (compare, for example, the
behavior of CM-1 TF-IDF and LSI runs with no filter and
with filter of 0.1). In general, we conclude that RETRO is
capable of achieving good-to-excellent separation between
true links and false positives in the candidate link lists.

4.4.1 Evaluation Summary

We now examine RETRO in terms of the high-level goals
presented in Section 2. Accuracy, a subgoal of believability, is
measured using precision, recall, and f-measure. Using the
classifications from Table 3, the figures above indicate that
excellent recall and precision can be achieved with TE-IDF
for the MODIS data set. LSI can achieve acceptable recall
with excellent precision for this data set also. We can
achieve good recall with acceptable precision or acceptable
recall with good precision for TF-IDF for the CM-1 data set.
We can achieve good recall with acceptable precision using
LSI for CM-1. Recalling earlier discussions, recall is of the
most importance to us in tracing requirements. Therefore,
overall, it appears that RETRO meets the accuracy subgoal.
At first glance, it appears that RETRO does not achieve the
scalability subgoal of believability. The LSI method does
not work well on CM-1. The f-measure does not look
promising for the CM-1 data set. However, the recall and
precision for CM-1 are acceptable for TF-IDF: recall slightly
above 60 percent (acceptable) with precision at ~42 percent
(good) and recall at ~75 percent (good) with precision at
20 percent (acceptable). Also, selectivity is quite low while
recall is high for CM-1 (85 percent recall with 5-6 percent
selectivity). Though we’d like precision to be higher, we still
see that that the M x N sized collection of elements that

Effects of Filtering: Recall vs. SelectivityTrajectories
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Fig. 9. Selectivity, (a) MODIS data set and (b) CM-1 data set, TF-IDF, Top 2 feedback.
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must be examined for tracing (e.g., M high-level require-
ments and N design elements) has been drastically reduced,
with a very high probability that all true links are shown in
the list that has been retrieved (high recall). This represents
a tremendous effort savings for an analyst, going from M x N
worth of work to 0.05 *(M x N) worth of work. Therefore, it
appears that RETRO scales. Lag decreases greatly over
subsequent feedback iterations, as shown above. This
shows that the Discernability goal has been met. The true
links rise to the top of the list while the false links fall.
Endurability has been addressed since selectivity drops
significantly for MODIS and CM-1 for TF-IDF, getting close
to 0 for CM-1 with acceptable recall and close to 5 percent
for MODIS with recall of 70 percent.

Though as researchers we strive for higher accuracy,
better scalability, etc., we feel justified in assessing RETRO
as a success from a practitioner’s view. Having performed
manual traces as well as traces with various keyword
matching techniques, etc., it is clear that the amount of
effort required of the tracing analyst has been substantially
reduced. Also, the need to search for relevant items has
been drastically reduced. Our experience in industry has
shown that analysts will render a decision on links
presented to them, but may rarely or never go and “hunt”
for potential links that were not shown to them. So, the need
for high recall is obvious and the “secondary” nature of
precision is also apparent. Selectivity is very important
because it tells us how much smaller the potential task has
become for the analyst. If the potential M x N tracing job
gets smaller and smaller with each subsequent provision of
feedback by the analyst, closing in on 0-5 percent, then
RETRO is achieving the desired results. The selectivity
graphs for RETRO show this to be the case.

5 RELATED WORK

Related work is organized into two sections: very early,
qualitative work in tracing (Section 5.1) and the application
of information retrieval methods to tracing (Section 5.2).

5.1 Requirements Tracing

We start by providing an overview of the research
conducted on requirements tracing and traceability in the
past 10-15 years. This early work predates the use of
information retrieval methods for tracing and for candidate
link generation. It also predates the use of currently
accepted measures to quantitatively assess the accuracy of
tracing methods. This makes direct comparison of this work
with ours infeasible. Hence, we present the work to provide
historical context from which research on automating
tracing has emerged. In Section 5.2, we discuss recent work
on automating tracing and traceability and compare that
work to ours.

Early research in traceability falls into a number of areas:
early tracing using DBMS, study of the traceability process,
research on change tracing, research on traceability rules,
and some general work on traceabilty. We describe each
area in turn.

Early tracing using DBMS. We have been tackling the
requirements tracing problem for many decades. In 1978,
Pierce [37] designed a requirements tracing tool as a way to
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build and maintain a requirements database and facilitate
requirements analysis and system verification and valida-
tion for a large Navy undersea acoustic sensor system.
Hayes et al. [19] built a front end for a requirements tracing
tool called the Software Automated Verification and
Validation and Analysis System (SAVVAS) Front End
processor (SFEP). This was written in Pascal and interfaced
with the SAVVAS requirements tracing tool that was based
on an Ingres relational database. SFEP allows the extraction
of requirement text as well as the assignment of require-
ment keywords through the use of specified linkwords such
as “shall,” “must,” “will,” etc. These tools are largely based
on keyword matching and threshold setting for that
matching. Several years later, the tools were ported to
hypercard technology on Macs and then to Microsoft
Access and Visual Basic running on PCs. This work is
described by Mundie and Hallsworth in [34]. These tools
have since been further enhanced and are still in use as part
of the Independent Verification and Validation (IV&V)
efforts for the Mission Planning system of the Tomahawk
Cruise Missile as well as for several NASA Code S science
projects.

Traceability process. Gotel and Finkelstein [17] present the
requirements traceability problem based on their empirical
studies. They analyze the difference between pretraceability
and posttraceability and demonstrate the necessity of
increased focus on pretraceability to improve the require-
ments traceability process. Pohl [36] presents an approach
for tracing requirements to their origins called pretrace-
ability. Pohl presents a three-dimensional framework for a
requirements engineering trace repository to enable selec-
tive trace retrieval and to enable automated trace capture.
Abrahams and Barkley [1], Ramesh [40], and Watkins and
Neal [54] discuss the importance of requirements tracing
from a developer’s perspective and explain basic concepts
such as forward, backward, vertical, and horizontal tracing.
Ramesh and Jarke examine reference models for traceabil-
ity. They establish two specific models, a low-end model of
traceability and a high-end model of traceability for more
sophisticated users [41].

Change tracing. Ramesh and Dhar [42] developed a
conceptual model, called Representation and MAintenance
of Process knowledge (REMAP), that captures process
knowledge to allow one to reason about requirements and
the effects of changes in the system design and main-
tenance. Casotto [9] examined runtime tracing of the design
activity. Her approach uses requirement cards organized
into linear hierarchical stacks and supports retracing.
Cleland-Huang et al. [10] propose an event-based trace-
ability technique for supporting impact analysis of perfor-
mance requirements. Data is propagated speculatively into
performance models that are then reexecuted to determine
impacts from the proposed change.

Traceability rules. Spanoudakis [48] traces textual
requirements to object models using heuristic traceability
rules. Three types of beliefs are described and measured:
belief in rule satisfiability, belief in rule correctness, and
belief in traceability relation. Based on the values of these
beliefs, traceability rules and relations are modified.
Spanoudakis et al. [49] use two types of rules, namely,
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requirements-to-object-model (ROTM) and interrequire-
ment traceability (IREQ) rules, to automate the generation
of traceability relations. They describe a prototype system
that incorporates a traceability rule which interprets
ROTM and IREQ traceability rules and generates trace-
ability relations. Egyed et al., in [14], discuss a technique
for automating requirements tracing using Trace Analyzer
[13]. They take known dependencies between software
development artifacts and “common ground” such as
source code. They then build a graph based on the
common ground and its overlap with the artifacts. The
graph structure is manipulated iteratively using large
numbers of rules. For them, trace dependency implies
that two artifacts relate to at least one common node in
the graph. The usage cases are tested against code to find
trace dependencies. Egyed et al. [14] focus on dependen-
cies between requirements and code and between model
elements and code, whereas the current work focuses on
dependencies between unstructured, textual software
artifacts.

Miscellaneous other research on traceability. Hoffman et al.
[28] present a requirements catalog for requirements
management (RM) tools. The catalog helps users compare
and select requirements management tools based on
functional requirements met by the tools. Requirements
for requirements management tools are defined from the
point of views of developers, project administrators, and
tool administrators. Requirements address areas such as
information model, views of the data, format, change
management, documentation of history, baselines, tool
integration, document generation, workflow management,
installation and administration of projects, database, en-
cryption, etc. The requirements pertaining to tracing are
fairly high-level. As RETRO currently focuses on candidate
link generation, the Hoffman et al. requirements do not yet
apply. As we expand to investigate other areas of tracing,
we will reexamine the Hoffman et al. paper. Tsumaki and
Morisawa [53] discuss requirements tracing using UML.
Specifically they look at tracing artifacts such as use-cases,
class diagrams, and sequence diagrams from the business
model to the analysis model and to the design model (and
back) [53].

There have also been significant advances in the area of
requirements elicitation, analysis, and tracing. Work has
been based on lexical analysis, such as extraction and
analysis of phoneme occurrences to categorize and analyze
requirements and other artifacts [45]. Bohner’s work on
software change impact analysis using a graphing techni-
que may be useful in performing tracing of changed
requirements [7]. Anezin [2] and Brouse [8] advance
backward tracing and multimedia requirements tracing.

Pinheiro and Goguen [38] describe a tool called Trace-
ability of Object Oriented Requirements (TOOR). TOOR
permits three types of tracing: selective tracing, interactive
tracing, and nonguided tracing.

The work mentioned above presents a historical per-
spective of requirements tracing. The majority of the
research concentrates on understanding the tracing process
and discovery of traceability rules. This has served to
establish a general framework for research on traceability.

However, our specific interest (as described in this paper) is
much more narrow and concentrates on applying Informa-
tion Retrieval (and similar) techniques to automate parts of
the tracing process. In the next section, we concentrate on
related work in this research direction.

5.2 Information Retrieval in Requirements Analysis

In general, the software tools described above address the
overall problem of requirements management during the
lifecycle of a software project. Their requirements tracing
components typically rely, one way or another, on manual
keyword assignment—a long and arduous process. With
time, practitioners realized the potential benefits of, and the
researchers started working on, methods for automating the
requirements tracing process. Of the many methods
examined, Information Retrieval techniques appear to offer
much promise for this automation.

Two research groups worked on requirements-to-code
tracebility. Antoniol et al. [3] considered two IR methods:
probabilistic IR and vector retrieval (TE-IDF). They have
studied the traceability of requirements to code for two data
sets. In their testing, they retrieved the top ¢ matches for
each requirement for ¢ =1,2,... and computed precision
and recall for each . Using improved processes, they were
able to achieve 100 percent recall at 13.8 percent precision
for one of the data sets. In general, they have achieved
encouraging results for both the TF-IDF and probabilistic IR
methods. Following [3], Marcus and Maletic [31] applied
the latent semantic indexing (LSI) technique to the same
problem. In their work, they used the same data sets and
the same retrieval tests as [3]. They have shown that LSI
methods show consistent improvement in precision and
recall and were able to achieve combinations of 93.5 percent
recall and 54 percent precision for one of the data sets.

Antoniol et al. [4] performed an experiment that
examined a process for recovering “as is” design from
code, comparing recovered design with the actual design,
and helping the user to deal with inconsistency. The process
evaluated consisted of a number of steps: Code and Object
Model Technique (OMT) [44] design is translated to
Abstract Object Language (AOL) using a tool, AOL is
parsed to produce an Abstract Syntax Tree (AST) by a tool,
a relations traceability check is performed, a dictionary
traceability check that computes edit distance between
attribute names is performed, a maximum matching
algorithm and maximum likelihood classifier is applied,
and results are displayed visually [4]. The project evaluated
was an industrial telecommunications system and consisted
of 29 C++ components, about 308 KLOC, for which object-
oriented object models and code was available [4]. Settimi
et al. [46] discuss the use of information retrieval techniques
to dynamically generate traces. Though they primarily
focus on tracing requirements to UML artifacts, they also
compare different information retrieval techniques for
tracing requirements to code and test cases. The authors
have analyzed the effectiveness of the Vector space model
and pivot normalization-based score using both thesaurus
and no thesaurus. They show that requirements tracing to
UML diagrams produces impressive results.

While [3] and [31] studied requirements-to-code trace-
ability, in [20] and [12] we have addressed the problem of
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tracing requirements between different documents in the
project document hierarchy. In the preliminary study [20],
we have implemented three methods: TF-IDF, TF-IDF with
key phrases, and TF-IDF with simple thesaurus. We
reported on the success of these methods in identifying
links between two requirements documents. In our study,
retrieval with simple thesaurus outperformed other meth-
ods on our test data set, producing recall of 85 percent with
precision of 40 percent. The research started in [20] is
continued in [21]. We extended the baseline TF-IDF and
thesaurus retrieval methods with analyst relevance feed-
back processing capability [21].

In [21], we introduced requirements for a tracing tool
from an analyst’s perspective. Note that the requirements
proposed in [21] and this paper have two components:
objective, which can be evaluated by studying the software
outputs, and subjective, which can only be evaluated by
studying the work of human analysts with the tool and their
reactions to the outputs. This study concentrates on the
objective aspects of the work; a subjective study is currently
in development stages. This paper extends our work in [21]
as well as [24] and [23] by introducing latent semantic
indexing, by evaluating the subgoal of scalability, by
examining a number of secondary measures, and by using
a new, large data set for validation.

In [22], we have developed a framework for comparing
traceability studies and we have used it to compare four of
the abovementioned studies, [3], [4], [31], [20] in a detailed
manner. Examining our current work, we note that [3] and
[31] remain the closest related research. The work described
in this paper has used two of the three methods found in
[3], [31]. However, we should note the key differences in
our research and theirs. Both Antoniol et al. and Marcus
and Maletic have applied their method to the documenta-
tion-to-code traceability problem, whereas our current work
addresses requirements-to-requirements and requirements-
to-design traceability. In addition, the key aspect of our
study in this paper is the effects of relevance feedback
processing on tracing—the question not addressed in the
work prior to ours. If we factor out the feedback from our
study, we see both similarities and differences in the results.
Quantitatively (despite the fact that [3], [31] used somewhat
different measurement techniques), the precision-recall
results we are getting are similar to the numbers obtained
by them, although we stress here that direct comparison of
numbers is not very meaningful because of the difference in
data sets used. Qualitatively, Marcus and Maletic [31]
showed that LSI outperformed tf-idf on the same data sets
for documentation-to-code traceability. In our experiments,
we have observed that tf-idf outperformed LSI.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we examined the effectiveness of information
retrieval methods in automating the tracing of textual
requirements. Specifically, we found that analyst feedback
improves the final trace results using objective measures. We
also posited a set of goals for an effective tracing tool and then
evaluated our tracing tool, RETRO, in this light. We found
evidence that RETRO does satisfy the Believability subgoals
of Accuracy and Scalability as well as the Discernability and
Endurability goals. There is also preliminary evidence for
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the objective aspect of the Usefulness portion of the Utility
subgoal of Believability.

Much work remains to be done, however. In terms of the
effectiveness of methods, we can see that we are on the right
track. We are able to achieve high levels of recall at
reasonable levels of precision. But, we are not achieving
high levels of precision without the assistance of filtering.
This indicates to us that we may need other methods to
address precision. One line of research we intend to pursue
involves determining the important words in a textual
artifact, using, for example, the Chi-square.

The remaining goals (Believability::Utility and Endur-
ability) need to be evaluated. A subjective study will be
required to evaluate these goals and is currently in the
planning stages.
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