SEEWeb: Making Experimental Artifacts Available

Jeff Offutt
ISE Department, MS 4A4
George Mason University
Fairfax, VA 22030-4444 USA

ofut@ise.gmu.edu

ABSTRACT

This position paper suggests that some of the technical and
methodological challenges facing software testing researchers
can be addressed by establishing a repository of experimen-
tal software artifacts, in particular, artifacts that are related
to software testing empirical research. We introduce the
Software Engineering Experiments on the Web (SEEWEB)
project, a Web site that is created to be a convenient and us-
able infrastructure for gathering, organizing, and distribut-
ing experimental software artifacts. A common problem
in designing software engineering and software testing ex-
periments is finding experimental artifacts that are appro-
priate for the experiment, convenient to gather and use,
and will fit with other experimental artifacts. SEEWEB
was initially funded by the NSF and is offered as a ser-
vice to the community and provides access to experimental
artifacts through an interface that allows browsing, search-
ing and downloading. SEEWEB loosely follows the open-
source philosophy; experimental artifacts are provided by
researchers on an as-is basis with the only payment be-
ing citations and acknowledgments to the contributing re-
searchers. SEEWEB can be accessed online through the
URL http://wuw.ise.gmu.edu/seeweb/.

1. INTRODUCTION

A continual theme of the software engineering research
field over the past two decades has been an increasing so-
phistication of experimentation, both in terms of the design
of the experiments and analysis of data. Software engineer-
ing experimentation requires access to artifacts that are ap-
propriate for the experiment, that are convenient to gather
and use, and that will match other artifacts used in the same
experiment. Many kinds of software engineering experimen-
tal artifacts exist, including program source, program ex-
ecutables, design documents, requirements, specifications,
documentation, and of course, tests.

The reuse of software engineering artifacts contributes to
replication of experimental results as well as consistency of

Permission to make digital or hard copies of all or part of this work for

Yuan Yuan
Computer Science
George Mason University
Fairfax, VA 22030-4444 USA

yyangl@gmu.edu USA

Jane Huffman Hayes
Computer Science
University of Kentucky
Lexington, KY 40506-0495

hayes@cs.uky.edu

reported results in the literature. But reuse is not easy.
While it may be easy to obtain select artifacts for reuse, it
is difficult to obtain entire projects in a form that is con-
venient for use. A researcher attempting to obtain project
information for reuse encounters many obstacles:

e They are difficult to find
e Once found:

— they are difficult to obtain

— other researchers do not respond to requests

— other researchers respond negatively to requests
— researchers provide partial data that is not useful
— companies may put restrictions on publications

— agencies or companies will not allow use of data
by non-citizens

Creating new artifacts is time consuming and difficult and
runs the risk of containing unexpected errors (until used a
few times).

Some further, unique challenges are faced by testing re-
searchers. The WERST 2004 call for papers lists a num-
ber of relevant questions. For example, seeding of faults is
frequently required in order to measure effectiveness. How
do we identify representative faults and fault distributions?
What represents good, reusable testing research hypothe-
ses? What are representative subject programs? How can
we access subject programs, faults, and tests used by other
researchers?

Open-source software can certainly help. A recent ed-
itorial in Empirical Software Engineering stated [1]: “As
empirical software engineers, we should embrace this devel-
opment [open-source software|. Suddenly one of the greatest
obstacles in the way of empirical software engineering has
been cleared! Not only is source code available, but also
defect reports, update logs, etc. For a change, we can now
focus on the analysis rather than the data collection.” How-
ever, this is only a partial solution. Open-source software
represents part of the industry, but not all. Also, Chen et
al. found problems with open-source projects, particularly
with ChangeLog files [3].

These problems suggest a novel solution: The software
engineering and software testing community needs access to

personal or classroom use is granted without fee provided that copies area, collection of experimental software artifacts that is con-
not made or distributed for profit or commercial advantage and that copies yenjent and usable. Our position is that this need can

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

be satisfied by a Web-based method to share experimen-
tal artifacts that support experimental reuse and collabo-
ration. Thus, in the summer of 2004, with support from a

grant from the NSF’s Research Experience for Undergradu-
ates program, we established the goal of making non-Open
Source software artifacts available on the Web in a format
that is as convenient to access as open-source software ar-
tifacts. This paper describes a Web application that is in-
tended to be a convenient and usable infrastructure for gath-
ering, organizing, and distributing experimental software ar-
tifacts.

The artifacts include software implementations, multiple
versions of the software implementations, requirements, trace
answer sets, formal specifications, design representations,
faulty versions of implementations, change logs, test case
sets created to satisfy various criteria, experimental data,
and shell scripts that serve as experimental infrastructure.
Our first step was to establish strong requirements for the
application.

2. PROJECT REQUIREMENTS

One of our initial decisions for this project was that the
User Interface (UI) to SEEWEB is crucial to its success.
The whole point of creating the service is to make it more
convenient to distribute experimental artifacts. A Web site
that is difficult to use will not be used, and therefore will be
a failure. Specifically, a Web site to distribute experimental
software artifacts must provide very flexible access to ar-
tifacts, and also be very simple to use. The most obvious
way to make a UI flexible is to add more and more features
to access and search for artifacts. Unfortunately, adding fea-
tures tends to make Uls more complicated to learn and use.
Conversely, the easiest way to make a Ul simple is to reduce
the number of features. That is, flexibility and simplicity
are conflicting requirements.

To resolve this conflict, our solution relies on two methods
that take advantage of technologies for Web applications.
First, users are shown the least amount of data necessary
to browse the contents, organized in a flexible way. Sec-
ond, a flexible and quick method for searching the Web site
is available as the primary mechanism for interfacing with
the system. To be precise, the searching technique is not ex-
actly searching per se, but actually uses filtering'. Thus, the
user is initially shown all projects in the SEEWEB system,
then uses the filtering mechanism to reduce the number of
projects of interest. The value of this filter will increase as
the number of projects grows.

3. SEEWEBCONCEPTUAL DESCRIPTION

SEEWESB is still a work in progress and is not yet sta-
bilized. Its database is also not yet well populated with
projects. On the other hand, it already shows promise as a
useful way to share experimental artifacts.

Conceptually, SEEWEB contains a collection of projects.
Each project has a unique name and is associated with in-
formation about artifacts that are located in files. Infor-
mation about projects are stored on the SEEWEB server,
which is currently located on a server maintained by the In-
formation and Software Engineering Department at George
Mason University. This information is stored in a sequen-
tial database. The actual artifact information is contained
in files. These fies may be stored on the SEEWEB server,

!This filtering is modeled loosely on the filtering in the mail
tool of the Mozilla Web browser.

or contributors may keep the files on their own servers and
let SEEWEB manage links to those files.

Each project includes the name of an author and a list of
publications that used or referenced the project. This list,
of course, will need to be regularly updated.

The artifacts include, but are not limited, to the following:

e Implementation

o Test cases

e Faulty versions

e Specifications

e Design

e Documentation

e Requirements

e Change log information
e Experimental data

e Shell scripts

e General comments about the project

A key to the usefulness of SEEWEB is the ability to search
for artifacts that match the needs of a particular experiment.
Our approach is to define categories of information that ex-
perimenters will care about. The system provides the ability
to filter on each category. For example, if a program must
be implemented in a specific language, an experimenter can
filter for projects in that language. Categories that are cur-
rently available include:

e Language: The implementation language of the pro-
gram.

e Size: Approximate size of an implementation in terms
of number of modules (classes) and lines of code.

e Date Added: The date the project was added to the
system.

e Last Updated: The date the project was last modified.

SEEWEB also defines three different types of users, each
with a different level of access to the projects.

e Public User: Public users shall be able to search,
read and download projects. No login is necessary.

e Trusted User: Trusted users can contribute projects.
They can add new projects into the system, and add
new artifacts to existing projects, as well as search,
read and download projects. Trusted users need to
apply for a login to the administrator through the Ul

e Administrator: The administrator can delete, add
and edit projects, and types of artifact and criteria.
The administrator can also delete, add and edit new
users, give permissions to users to add new projects,
list the users who have downloaded certain projects
and is able to search, read and download projects.

3.1 Software Design and Implementation

SEEWESB is designed as a straightforward Web applica-
tion on the J2EE platform. Most user screens, including
formatting, data entry and browsing capabilities, are im-
plemented with Java Server Pages. The JSPs interact with
Java beans, which manage the data. The Java beans, in
turn, use a database to store the data (currently MySql).
A significant advantage of the database is that the brows-
ing and filtering requests from users are translated into SQL
queries instead of being implemented as program methods.

One ramification of using MySql is that it only supports
a subset of SQL. In particular, MySql does not support
UNION and EXISTS clauses, nor does it support subqueries.
This complicated searching and sorting and meant that some
user requests have to be handled by several queries at the
programming level, and then code had to be written to com-
bine the results. We also found that OR statements could
not be used because the execution time is to great.

3.2 User Services
SEEWEB currently contains 36 JSPs and 20 Java classes,

most of which are simple beans to interface with the database.

A list of the components currently implemented follows:

e Registration: Users can register for an account in
SEEWEB. SEEWEB will automatically create public
user accounts.

e Logging in: Any user can log on to SEEWEB and
browse projects.

e User accounts: Public users can browse, view and
download projects. Trusted users can add and edit
projects and perform any of the functions of the pub-
lic users. Administrators can delete, add and edit
projects, and can delete, edit, and add new users.
They can also change the status of users and perform
all of the functions of the trusted users.

e Viewing/Browsing projects: Public, trusted and
administrator users can view all projects.

e Viewing/Browsing users: Administrators can view
all users. They can view users names, first name,
last name, status, email address and the names of the
projects they have added to SEEWEB.

e Displaying projects: Public, trusted and adminis-
trator users can view all projects in more detail.

e Adding/Editing/Deleting projects: Trusted and
administrator users can add and edit projects. Admin-
istrators can delete projects.

e Adding/Editing/Deleting users: Administrators
can add, edit and delete users.

e Sorting projects: Users can sort projects during
browsing.

e Searching projects: Users can search for a project
using the searching component. They can search by ar-
tifact, project name, requirements, specifications, im-
plementation, faults, tests, design, documents, logs,
data and scripts.

Users can also use a filter during their searches. The
search filters include contains, does not contain, begins
with, ends with, is, and is not.

e Sorting and searching projects: Users can further
customize their browsing through searching and sort-
ing.

e Sorting users: Administrators can sort on the types
of accounts to browse.

e Searching users: Administrators can search for users
under user names, first name, last name, status, email
address and project name.

e Sorting and searching users: Administrators can
further customize their browsing through searching and
sorting.

4. CONCLUSIONS

The SEEWEB project is in its infancy, but is ready to
be populated and used. Recently, the NASA Independent
Verification and Validation Facility placed several artifacts
on SEEWEB. These include a high level requirement docu-
ment, a design specification, and the verified trace between
the two (trace answer set) [2]. As a Trusted User, they
provided valuable feedback on the UI of SEEWEB. Use
by other researchers will serve to further improve it. Pre-
liminary feedback on SEEWEB lends support to our posi-
tion: some of the technical and methodological challenges
facing software testing researchers can be addressed by es-
tablishing a repository of experimental software artifacts,
particularly those relating to software testing empirical re-
search. SEEWEB can be accessed online through the URL
http://www.ise.gmu.edu/seeweb/, with login and password
(demo, demo).

5. ACKNOWLEDGMENTS

This work is supported in part by the U.S. National Sci-
ence Foundation under grant CCR-00-97056 and CCR-00-
97056 supplemental (NSF Research Experience for Under-
graduates). This work was also partially supported by NASA
under grant NAG5-11732.

6. REFERENCES

[1] R. Harrison, S. Counsell, and R. Nithi. Editoral: Open
source and empirical software engineering.
Ezperimental Software Engineering, 6:193-194, 2001.

[2] J. H. Hayes, A. Dekhtyar, S. Sundaram, and
S. Howard. Helping analysts trace requirements: An
objective look. In International Conference on
Requirements Engineering (RE’2004), 2004.

[3] L. Y. Kai Chen, Stephen R. Schach and J. Offutt.
Open-source change logs. Empirical Software
Engineering Journal, To appear, 2004.

