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Abstract 
A full understanding of the characteristics of 
faults is crucial to several important research 
areas in testing and software maintenance.  
Applicable maintenance research areas include 
change impact analysis, maintainability, 
regression testing, and comparative evaluation of 
maintenance techniques.  We explore the 
fundamental nature of faults by looking at the 
differences between a syntactic and semantic 
characterization of faults.  We offer definitions of 
these characteristics and explore the 
differentiation.  We discuss the concept of “size” 
of program faults.  This model is then directly 
applied to changes in corrective maintenance.  
The measurement of fault size provides interesting 
and useful distinctions between the syntactic and 
semantic characterization of changes. 
 
Eighth IEEE Workshop on Empirical 
Studies of Software Maintenance, 
Montreal, Canada, October 2002. 
 

1 INTRODUCTION 
 
The empirical study of software maintenance is 
largely dependent on historical data related to the 
changes made to software systems.  We examine 
this data to extract trends, to understand underlying 
aspects of software maintenance, and to test our 
research hypotheses.  Sometimes it is necessary for 
us to develop changes to facilitate our research, just 
as testing researchers must often seed faults into 
programs for evaluating testing techniques.  As 
change data is central to our empirical software 
maintenance research, we want to ensure that it is 
representative of real-world changes.  We feel that 

one way to achieve this end is to consider a 
semantic and syntactic characterization of changes.   

 
† Partially supported by the U.S. National Science 
Foundation under grant CCR-00-97056. †† Partially 
supported by NASA under grant NAS2-98028. 
 
By “change” we mean a program modification, 
including “real” changes made in response to 
software problem reports or “artificial” changes 
made for research purposes. 
This paper presents our position on the use of a 
semantic model of changes for empirical study of 
corrective software maintenance.  Section 2 
presents our position, introduces the semantic fault 
model, introduces a semantic change model, and 
looks at the quantification of size of a change.  
Section 3 presents the summary and conclusions. 
 

2 POSITION 
 
We claim that a syntactic and semantic 
characterization of software faults can facilitate 
several areas of software maintenance research.  
The fault characterization can be directly applied to 
software changes made as part of corrective 
maintenance.  Further, the notion of “size” of a 
fault may help facilitate the experimental study of 
corrective maintenance changes.  Specifically, 
change impact analysis, maintainability, and 
comparative evaluation of maintenance techniques 
can be enhanced through this model of size. 
 
It is the position of the authors thatchanges to 
software usually lowers its maintainability. 
Moreover, the authors hypothesize that semantic 
size is more important than syntactic size in 
determining if changes result in less maintainable 



code. If this can be validated, it provides direction 
to us as we maintain code.  For example, if a large 
semantic change is being made to a module, extra 
care should be taken to ensure that the 
maintainability is not further degraded.   



2.1 Semantic Model of Faults and 
Changes 
 
This paper is concerned with faults that compile but 
that can cause the program to exhibit incorrect 
behavior, not with syntactic faults that compilers 
can detect. Faults can be characterized semantically 
and syntactically [1].  A fault is the difference 
between the incorrect program and some correct 
program.  Syntactically, a fault may be localized in 
one statement or may be textually dispersed into 
several locations in the program.  Similarly, a fault 
may be repairable in many ways, thus there may be 
multiple correct versions.  This definition is in 
terms of the syntactic nature of a fault.  If a fault 
occurs naturally, then the syntactic nature of the 
fault can be described by the number of edit 
changes needed to correct the program.  If the fault 
is inserted or seeded into the program, the syntactic 
nature of the fault can be described by the number 
of edit changes to the program.  Examples of 
syntactic characterizations of faults include using 
an incorrect variable name or misusing parameters. 
 
A fault can also be characterized semantically.  
Each program P can be viewed as having a 
specification S that defines sets D, the input 
domain, R, the output range, and a mapping from D 
to R  (D  S  R). The program may compute results 
on a superset of D, or if the input is not in D, P may 
produce output that is not in R (undefined).  A 
semantic characterization of a fault views the faulty 
program as containing a computation that produces 
incorrect output over some subset of the input 
domain.  That is, the mapping of inputs to outputs 
(D  S  )R � (D  S  R) for some subset of D [1]. 
 
One can quickly see that this model of faults can be 
directly applied to changes (or fixes) being made as 
part of corrective maintenance.  A change has a 
syntactic characterization described by the number 
of fixes needed to correct the program.  A change 
has a semantic characterization described by the 
subset of the input domain D for which the 
mapping of inputs to outputs is not correct with 
respect to the specification S. 
 
This characterization gives us a different way to 
look at faults and changes.  It becomes useful when 
we introduce the notion of size of a fault and size of 
a change.  We define the syntactic size of a fault to 
be the fewest number of statements or tokens that 
need to be changed to get a correct program.  The 
syntactic size of a change is defined identically.  
We define the semantic fault size to be the relative 
size of the subdomain for D for which the mapping 

output is incorrect.  The semantic size of a change 
is defined identically [1]. 
 
To illustrate, let us consider very small faults.  A 
syntactically small fault may have only one token 
or one statement that is incorrect.  A semantically 
small fault may constitute only one or very few 
inputs of D that cause an incorrect mapping to 
output.  A fault that is syntactically small can result 
in a fault that is very large semantically.  
Conversely, a large syntactic fault in P may affect 
only a few inputs.  There is some intersection 
where small semantic faults can be modeled as 
small syntactic faults, and small syntactic faults can 
result in small semantic faults.  For example, 
consider the following code fragment: 
 
             for i: = 1 to n do 
                  A[i] := A [i] +1; 
 
Suppose this program fragment contains the very 
small syntactic fault that the addition operator 
should be a subtraction operator.  The fault will 
affect every input to the program and will affect 
every element of A for every input, thus the fault is 
semantically large [1].  Table 1 lists other examples 
of the possible intersections. 
 

Table 1.  Fault Size Intersection. 

 
These observations and examples hold for changes 
in corrective maintenance as well. 
 

2.2 Implications 
 
This section considers the implications of the 
syntactic/semantic characterization of changes for 
corrective maintenance.  There are several central 
issues.  The first deals with whether empirical 
software maintenance studies have focused on 
changes that were syntactically small without 
consideration of semantic size.  The second issue is 
if this characterization of changes can help us 

Fault Size 
Characteristic 

Large semantic Small semantic 

Large syntactic Built a 
Gaussian 
random 
number 
generator when 
reading values 
from a pre-
existing file 
was desired 

Built mean 
calculation of 
list of numbers 
instead of 
median 

Small syntactic Used ‘>’ when 
‘<’ was desired 

Used ‘>=’ 
when ‘>’ was 
desired 



estimate and/or measure the maintainability of 
software.  If so, this characterization may also help 
us comparatively evaluate corrective maintenance 
techniques. 
 
Empirical Studies 
 
In many software maintenance studies, case studies 
or experiments using problem reports or program 
changes/fixes were undertaken to examine a 
research area.  For example, De Lucia, Persico, 
Pompella, and Stefanucci looked at two projects to 
improve the corrective maintenance cost prediction 
model currently used in a software company [2].  
They looked at the number of maintenance tasks in 
three categories:  maintenance tasks that require 
source code modification, maintenance tasks 
requiring fixing of data misalignments through 
database queries, and maintenance tasks not falling 
into the above two categories.  Their study did not 
look at the size of the maintenance tasks or the 
characteristics of the tasks.  Bianchi, Caivano, 
Lanubile, Rago, and Visaggio [3] use faults as a 
measure of reliability when comparing distributed 
and collocated projects.  They observe that a gap 
between estimated and actual staffing levels is 
attributable to a higher number of faults for a Work 
Packet (a work packet is a functional area of a 
software system, including programs, library 
elements, or JCL procedures).  The faults are not 
characterized semantically or syntactically.  In both 
cases above, one can imagine that the semantic size 
and/or syntactic  size of the changes could impact 
the results.  For example, for Bianchi et al. [3] it 
could be the case that it is not a higher number of 
faults that caused the result but rather a higher 
number of small semantic faults.  Similarly, one 
can imagine that tasks may require different levels 
of effort (and hence cost) based on the semantic and 
syntactic size of the changes. 
 
It may be the case that there is knowledge to be 
gained about building maintainable software by 
looking at the frequency of occurrences of faults by 
size based on the types of changes made.  That is, 
do we tend to introduce other small semantic faults 
when we are making changes that are small 
semantically?  What types of faults occur most 
frequently?  If we can collect data on this, we can 
ensure that we use more operationally 
representative fault data in our testing research and 
more realistic change data in our maintenance 
research. 
 
Measuring Maintainability 
 
There is no clear agreement on how to measure 
maintainability [8].  Welker suggests measuring it 

statically by using a Maintainability Index (MI) [4].  
A program's maintainability is calculated using a 
combination of widely used and commonly 
available measures to form the MI.  A large MI 
value indicates that the program is easy to maintain.  
The basic MI of a set of programs is a polynomial 
of the following form:  
 
   MI = 171 - 5.2*ln(aveV) - 0.23*aveV(g') – 
   16.2*ln(aveLOC) – 50*sin (sqrt(2.4perCM)) 
 
The coefficients are derived from actual usage, with 
the terms defined as follows: 
 
aveV = average Halstead Volume V per module 
aveV(g') = average extended cyclomatic complexity 
per module 
aveLOC = the average count of lines of code (LOC) 
per module, and optionally 
perCM = average percent of lines of comments per 
module (calculated by summing comments across 
all modules, divided by the sum of LOC of all 
modules) [5,12] 
 
 
Oman evaluated the MI and found that the above 
metrics are good and sufficient predictors of 
maintainability [5].  Ramil suggests using D 
Effort(t) = A * ModulesHandled(t )  + B where 
DEffort(t) is the effort in person-months applied 
during a one-month interval (from month t to t+1) 
and ModulesHandled(t) is the number of modules 
that were either added to the system, modified, or 
both (if both, the module is counted only once) 
during the interval [6]. The model parameters  A and 
B are to be derived from historical data, by, for 
example, least squares regression [13]. By detecting 
changes to A and B as a system evolves one may 
infer changes in evolvability.  Polo, Piattini and 
Ruiz use number of modification requests, mean 
effort in hours per modification request, and type of 
correction to examine maintainability [7].  They 
found no meaningful influence of size metrics on 
the number of faults and failures.  They looked at 
three types of maintenance requests:  urgent 
corrective, non-urgent corrective, and perfective.   
 
One can imagine that Ramil’s model would be 
impacted by the semantic and syntactic size of the 
changes made to ModulesHandled.  Similarly, a 
more detailed characterization of the urgent and 
non-urgent corrective maintenance requests in Polo, 
Piattini, and Ruiz’s work could have led to different 
results. 
 
Comparing Maintenance Techniques 
 



When empirically comparing maintenance 
techniques, we sometimes intentionally change the 
software to study the resulting maintainability, 
much as testing researchers seed faults in programs 
to compare the effectiveness of testing techniques.  
When we make changes to programs under study, 
we often insert faults that are syntactically small.  
Many of the common mistakes made by Java 
programmers are syntactically small [9].  These 
changes tend to be simpler to define and manage.  
Thus, a more effective consideration would be 
semantic size. 
 
Consider the case for testing.  If we insert a large 
semantic fault, the fault will be easy to detect via 
testing (as many inputs will cause an incorrect 
output mapping).  If we are measuring testing 
effectiveness, we are biasing our results toward the 
testing strategy.  If we are comparing two testing 
strategies, we will be less likely to detect any 
difference.  Conversely, if we seed faults that are 
too small semantically, we bias the results against 
the testing strategy.  Or if comparing two, neither 
will likely work very well [1]. 
 
The same holds true for evaluation of maintenance 
techniques.  Suppose a new maintenance technique 
will be used to generate test cases for changes made 
to the code as well as to “automatically” insert in-
line comments describing the changes.  If we make 
semantically large changes to the programs in our 
empirical evaluation, the technique will probably 
perform very well.  If we make changes that are 
semantically very small, the technique will not 
perform as well. Thus, the semantic size of the 
changes can bias the results. 
 
Similarly, if we are comparing technique A to 
technique B, the use of very small semantic 
changes will result in neither technique working 
well, while large semantic changes will result in 
very little differences between the two.  Obviously 
if we make semantically small changes in the 
control and semantically large changes in the 
experimental group, our experiment is no longer 
comparing apples to apples.  In other words, an 
additional threat to validity must be considered 
when designing experiments on corrective 
maintenance – have we treated the control and 
experimental groups equally with respect to 
semantic fault size? 
 
Change Impact Analysis 
 
Goradia [10] has suggested a technique called 
impact analysis that estimates, for a given test case 
and statement, the “impact” that statement has on 
the output of the program.  We suggest that this is 

related to the semantic model in the following 
sense.  If a statement has a large impact on the 
program’s output when averaged over a number of 
test cases, then faults that appear on or partially on 
that statement will tend to have a larger semantic 
size. 
 
When performing change impact analysis, we may 
want to examine the “impact” before we make a 
corrective maintenance change.  If a small semantic 
change is being made, we may want to add special 
checks to our inspections and reviews as we know 
testing is not likely to uncover any small semantic 
mistakes we might make when making a small 
semantic change. Experimentation is needed to 
determine if impact can be used to approximate 
size. 
 

2.3 Estimating Semantic and 
Syntactic Size of Changes 
 
As discussed in Section 2.1, the syntactic 
characteristic of change deals with the number of 
tokens or statements altered in order to make the 
change.  This also offers a very straightforward 
measurement – the number of tokens or statements 
that are modified approximates the syntactic size of 
the change.  We often estimate the number of lines 
of code or number of classes that must be modified 
to correct a problem report.  This characteris tic is 
already considered often in our field.  However, the 
semantic size of a change probably has a greater 
affect on the difficulty of the change. 
 
This brings up several questions.  Is it possible to 
estimate the number of inputs for which incorrect 
output mapping occurs from a problem report or 
maintenance request?  It has been our experience 
that problem reports rarely provide this level of 
detail.  In the rare case that we are fortunate enough 
to stumble across a problem report that tells us 
“change value1 >= constant1 to value1 > 
constant1” we know that the semantic size of the 
change is 1 (for the input that is equal to 
constant1).  A quick look at Bugzilla [11], the bug 
tracking system of the open source web browser 
Mozilla, indicates this intuition is correct.  None of 
the bug report descriptions we examined contains 
such levels of detail. 
 
Can testing provide some assistance in this 
estimation?  We hypothesize that there may be 
three ways to approximately measure the semantic 
size of seeded faults, which could also be applied to 
naturally occurring faults (i.e., maintenance 
changes): 
 



• Look at the test cases used in a study and see 
how many tests cases find each fault  

 
• Generate many random test cases and count 

how many test cases find each fault  
 
• Obtain inputs following a usage profile and 

count how many test cases find each fault [1] 
 
It appears that only the first option above can be 
easily adapted to corrective maintenance. We 
hypothesize that this can be adapted to changes 
(versus faults) in this way: 
 
• Look at the test cases used and/or user 

scenarios used and see how many detected the 
fault that is now being corrected 

 
• Count the number of reviewers or inspectors 

that detected the fault (that is now being 
corrected) during a code walkthrough or 
inspection 

 
Further research and experimentation is required to 
determine other means for estimating the semantic 
size of changes or planned changes. 
 
 

3 CONCLUSIONS 
 
This paper proposes a model for characterizing 
changes based on the syntactic and semantic size 
and looks at possible implications of this model. 
Empirical studies in computer software 
maintenance should consider the characterization of 
changes based on its syntactic and semantic size.  
Techniques for estimating and measuring the 
semantic size of changes need to be developed.  
These techniques will allow a new model for 
evaluating maintainability, which will allow 
empirical investigations to help answer questions 
such as: Is maintainability impacted by the 
characteristics and size of changes?  Is it  easier to 
make a large syntactic change that is semantically 
small?  Is it easier to make a small syntactic change 
that is semantically large?  Other questions will 
follow as this area is explored in more detail. 
 
Also, the ideas presented in this position paper need 
to be extended to apply to other types of 
maintenance such as adaptive and preventive. 
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