
Applying a Semantic Fault Model to the Empirical
Study of Corrective Maintenance

Jane Huffman Hayes (corresponding author) ††

Laboratory for Advanced Networking
Computer Science

University of Kentucky
301 Rose Street

Lexington, KY 40506-0495
 (+1) 859-257-3171 (859) 323-3740fax

hayes@cs.uky.edu

Jeff Offutt†
Information and Software Engineering

George Mason University
ISE Department, 4A4

Fairfax, VA 22030-4444
(+1) 703-993-1654
ofut@ise.gmu.edu

Abstract
A full understanding of the characteristics of
faults is crucial to several important research
areas in testing and software maintenance.
Applicable maintenance research areas include
change impact analysis, maintainability,
regression testing, and comparative evaluation of
maintenance techniques. We explore the
fundamental nature of faults by looking at the
differences between a syntactic and semantic
characterization of faults. We offer definitions of
these characteristics and explore the
differentiation. We discuss the concept of “size”
of program faults. This model is then directly
applied to changes in corrective maintenance.
The measurement of fault size provides interesting
and useful distinctions between the syntactic and
semantic characterization of changes.

Eighth IEEE Workshop on Empirical
Studies of Software Maintenance,
Montreal, Canada, October 2002.

1 INTRODUCTION

The empirical study of software maintenance is
largely dependent on historical data related to the
changes made to software systems. We examine
this data to extract trends, to understand underlying
aspects of software maintenance, and to test our
research hypotheses. Sometimes it is necessary for
us to develop changes to facilitate our research, just
as testing researchers must often seed faults into
programs for evaluating testing techniques. As
change data is central to our empirical software
maintenance research, we want to ensure that it is
representative of real-world changes. We feel that

one way to achieve this end is to consider a
semantic and syntactic characterization of changes.

† Partially supported by the U.S. National Science
Foundation under grant CCR-00-97056. †† Partially
supported by NASA under grant NAS2-98028.

By “change” we mean a program modification,
including “real” changes made in response to
software problem reports or “artificial” changes
made for research purposes.
This paper presents our position on the use of a
semantic model of changes for empirical study of
corrective software maintenance. Section 2
presents our position, introduces the semantic fault
model, introduces a semantic change model, and
looks at the quantification of size of a change.
Section 3 presents the summary and conclusions.

2 POSITION

We claim that a syntactic and semantic
characterization of software faults can facilitate
several areas of software maintenance research.
The fault characterization can be directly applied to
software changes made as part of corrective
maintenance. Further, the notion of “size” of a
fault may help facilitate the experimental study of
corrective maintenance changes. Specifically,
change impact analysis, maintainability, and
comparative evaluation of maintenance techniques
can be enhanced through this model of size.

It is the position of the authors thatchanges to
software usually lowers its maintainability.
Moreover, the authors hypothesize that semantic
size is more important than syntactic size in
determining if changes result in less maintainable

code. If this can be validated, it provides direction
to us as we maintain code. For example, if a large
semantic change is being made to a module, extra
care should be taken to ensure that the
maintainability is not further degraded.

2.1 Semantic Model of Faults and
Changes

This paper is concerned with faults that compile but
that can cause the program to exhibit incorrect
behavior, not with syntactic faults that compilers
can detect. Faults can be characterized semantically
and syntactically [1]. A fault is the difference
between the incorrect program and some correct
program. Syntactically, a fault may be localized in
one statement or may be textually dispersed into
several locations in the program. Similarly, a fault
may be repairable in many ways, thus there may be
multiple correct versions. This definition is in
terms of the syntactic nature of a fault. If a fault
occurs naturally, then the syntactic nature of the
fault can be described by the number of edit
changes needed to correct the program. If the fault
is inserted or seeded into the program, the syntactic
nature of the fault can be described by the number
of edit changes to the program. Examples of
syntactic characterizations of faults include using
an incorrect variable name or misusing parameters.

A fault can also be characterized semantically.
Each program P can be viewed as having a
specification S that defines sets D, the input
domain, R, the output range, and a mapping from D
to R (D S R). The program may compute results
on a superset of D, or if the input is not in D, P may
produce output that is not in R (undefined). A
semantic characterization of a fault views the faulty
program as containing a computation that produces
incorrect output over some subset of the input
domain. That is, the mapping of inputs to outputs
(D S)R � (D S R) for some subset of D [1].

One can quickly see that this model of faults can be
directly applied to changes (or fixes) being made as
part of corrective maintenance. A change has a
syntactic characterization described by the number
of fixes needed to correct the program. A change
has a semantic characterization described by the
subset of the input domain D for which the
mapping of inputs to outputs is not correct with
respect to the specification S.

This characterization gives us a different way to
look at faults and changes. It becomes useful when
we introduce the notion of size of a fault and size of
a change. We define the syntactic size of a fault to
be the fewest number of statements or tokens that
need to be changed to get a correct program. The
syntactic size of a change is defined identically.
We define the semantic fault size to be the relative
size of the subdomain for D for which the mapping

output is incorrect. The semantic size of a change
is defined identically [1].

To illustrate, let us consider very small faults. A
syntactically small fault may have only one token
or one statement that is incorrect. A semantically
small fault may constitute only one or very few
inputs of D that cause an incorrect mapping to
output. A fault that is syntactically small can result
in a fault that is very large semantically.
Conversely, a large syntactic fault in P may affect
only a few inputs. There is some intersection
where small semantic faults can be modeled as
small syntactic faults, and small syntactic faults can
result in small semantic faults. For example,
consider the following code fragment:

 for i: = 1 to n do
 A[i] := A [i] +1;

Suppose this program fragment contains the very
small syntactic fault that the addition operator
should be a subtraction operator. The fault will
affect every input to the program and will affect
every element of A for every input, thus the fault is
semantically large [1]. Table 1 lists other examples
of the possible intersections.

Table 1. Fault Size Intersection.

These observations and examples hold for changes
in corrective maintenance as well.

2.2 Implications

This section considers the implications of the
syntactic/semantic characterization of changes for
corrective maintenance. There are several central
issues. The first deals with whether empirical
software maintenance studies have focused on
changes that were syntactically small without
consideration of semantic size. The second issue is
if this characterization of changes can help us

Fault Size
Characteristic

Large semantic Small semantic

Large syntactic Built a
Gaussian
random
number
generator when
reading values
from a pre-
existing file
was desired

Built mean
calculation of
list of numbers
instead of
median

Small syntactic Used ‘>’ when
‘<’ was desired

Used ‘>=’
when ‘>’ was
desired

estimate and/or measure the maintainability of
software. If so, this characterization may also help
us comparatively evaluate corrective maintenance
techniques.

Empirical Studies

In many software maintenance studies, case studies
or experiments using problem reports or program
changes/fixes were undertaken to examine a
research area. For example, De Lucia, Persico,
Pompella, and Stefanucci looked at two projects to
improve the corrective maintenance cost prediction
model currently used in a software company [2].
They looked at the number of maintenance tasks in
three categories: maintenance tasks that require
source code modification, maintenance tasks
requiring fixing of data misalignments through
database queries, and maintenance tasks not falling
into the above two categories. Their study did not
look at the size of the maintenance tasks or the
characteristics of the tasks. Bianchi, Caivano,
Lanubile, Rago, and Visaggio [3] use faults as a
measure of reliability when comparing distributed
and collocated projects. They observe that a gap
between estimated and actual staffing levels is
attributable to a higher number of faults for a Work
Packet (a work packet is a functional area of a
software system, including programs, library
elements, or JCL procedures). The faults are not
characterized semantically or syntactically. In both
cases above, one can imagine that the semantic size
and/or syntactic size of the changes could impact
the results. For example, for Bianchi et al. [3] it
could be the case that it is not a higher number of
faults that caused the result but rather a higher
number of small semantic faults. Similarly, one
can imagine that tasks may require different levels
of effort (and hence cost) based on the semantic and
syntactic size of the changes.

It may be the case that there is knowledge to be
gained about building maintainable software by
looking at the frequency of occurrences of faults by
size based on the types of changes made. That is,
do we tend to introduce other small semantic faults
when we are making changes that are small
semantically? What types of faults occur most
frequently? If we can collect data on this, we can
ensure that we use more operationally
representative fault data in our testing research and
more realistic change data in our maintenance
research.

Measuring Maintainability

There is no clear agreement on how to measure
maintainability [8]. Welker suggests measuring it

statically by using a Maintainability Index (MI) [4].
A program's maintainability is calculated using a
combination of widely used and commonly
available measures to form the MI. A large MI
value indicates that the program is easy to maintain.
The basic MI of a set of programs is a polynomial
of the following form:

 MI = 171 - 5.2*ln(aveV) - 0.23*aveV(g') –
 16.2*ln(aveLOC) – 50*sin (sqrt(2.4perCM))

The coefficients are derived from actual usage, with
the terms defined as follows:

aveV = average Halstead Volume V per module
aveV(g') = average extended cyclomatic complexity
per module
aveLOC = the average count of lines of code (LOC)
per module, and optionally
perCM = average percent of lines of comments per
module (calculated by summing comments across
all modules, divided by the sum of LOC of all
modules) [5,12]

Oman evaluated the MI and found that the above
metrics are good and sufficient predictors of
maintainability [5]. Ramil suggests using D
Effort(t) = A * ModulesHandled(t) + B where
DEffort(t) is the effort in person-months applied
during a one-month interval (from month t to t+1)
and ModulesHandled(t) is the number of modules
that were either added to the system, modified, or
both (if both, the module is counted only once)
during the interval [6]. The model parameters A and
B are to be derived from historical data, by, for
example, least squares regression [13]. By detecting
changes to A and B as a system evolves one may
infer changes in evolvability. Polo, Piattini and
Ruiz use number of modification requests, mean
effort in hours per modification request, and type of
correction to examine maintainability [7]. They
found no meaningful influence of size metrics on
the number of faults and failures. They looked at
three types of maintenance requests: urgent
corrective, non-urgent corrective, and perfective.

One can imagine that Ramil’s model would be
impacted by the semantic and syntactic size of the
changes made to ModulesHandled. Similarly, a
more detailed characterization of the urgent and
non-urgent corrective maintenance requests in Polo,
Piattini, and Ruiz’s work could have led to different
results.

Comparing Maintenance Techniques

When empirically comparing maintenance
techniques, we sometimes intentionally change the
software to study the resulting maintainability,
much as testing researchers seed faults in programs
to compare the effectiveness of testing techniques.
When we make changes to programs under study,
we often insert faults that are syntactically small.
Many of the common mistakes made by Java
programmers are syntactically small [9]. These
changes tend to be simpler to define and manage.
Thus, a more effective consideration would be
semantic size.

Consider the case for testing. If we insert a large
semantic fault, the fault will be easy to detect via
testing (as many inputs will cause an incorrect
output mapping). If we are measuring testing
effectiveness, we are biasing our results toward the
testing strategy. If we are comparing two testing
strategies, we will be less likely to detect any
difference. Conversely, if we seed faults that are
too small semantically, we bias the results against
the testing strategy. Or if comparing two, neither
will likely work very well [1].

The same holds true for evaluation of maintenance
techniques. Suppose a new maintenance technique
will be used to generate test cases for changes made
to the code as well as to “automatically” insert in-
line comments describing the changes. If we make
semantically large changes to the programs in our
empirical evaluation, the technique will probably
perform very well. If we make changes that are
semantically very small, the technique will not
perform as well. Thus, the semantic size of the
changes can bias the results.

Similarly, if we are comparing technique A to
technique B, the use of very small semantic
changes will result in neither technique working
well, while large semantic changes will result in
very little differences between the two. Obviously
if we make semantically small changes in the
control and semantically large changes in the
experimental group, our experiment is no longer
comparing apples to apples. In other words, an
additional threat to validity must be considered
when designing experiments on corrective
maintenance – have we treated the control and
experimental groups equally with respect to
semantic fault size?

Change Impact Analysis

Goradia [10] has suggested a technique called
impact analysis that estimates, for a given test case
and statement, the “impact” that statement has on
the output of the program. We suggest that this is

related to the semantic model in the following
sense. If a statement has a large impact on the
program’s output when averaged over a number of
test cases, then faults that appear on or partially on
that statement will tend to have a larger semantic
size.

When performing change impact analysis, we may
want to examine the “impact” before we make a
corrective maintenance change. If a small semantic
change is being made, we may want to add special
checks to our inspections and reviews as we know
testing is not likely to uncover any small semantic
mistakes we might make when making a small
semantic change. Experimentation is needed to
determine if impact can be used to approximate
size.

2.3 Estimating Semantic and
Syntactic Size of Changes

As discussed in Section 2.1, the syntactic
characteristic of change deals with the number of
tokens or statements altered in order to make the
change. This also offers a very straightforward
measurement – the number of tokens or statements
that are modified approximates the syntactic size of
the change. We often estimate the number of lines
of code or number of classes that must be modified
to correct a problem report. This characteris tic is
already considered often in our field. However, the
semantic size of a change probably has a greater
affect on the difficulty of the change.

This brings up several questions. Is it possible to
estimate the number of inputs for which incorrect
output mapping occurs from a problem report or
maintenance request? It has been our experience
that problem reports rarely provide this level of
detail. In the rare case that we are fortunate enough
to stumble across a problem report that tells us
“change value1 >= constant1 to value1 >
constant1” we know that the semantic size of the
change is 1 (for the input that is equal to
constant1). A quick look at Bugzilla [11], the bug
tracking system of the open source web browser
Mozilla, indicates this intuition is correct. None of
the bug report descriptions we examined contains
such levels of detail.

Can testing provide some assistance in this
estimation? We hypothesize that there may be
three ways to approximately measure the semantic
size of seeded faults, which could also be applied to
naturally occurring faults (i.e., maintenance
changes):

• Look at the test cases used in a study and see
how many tests cases find each fault

• Generate many random test cases and count

how many test cases find each fault

• Obtain inputs following a usage profile and

count how many test cases find each fault [1]

It appears that only the first option above can be
easily adapted to corrective maintenance. We
hypothesize that this can be adapted to changes
(versus faults) in this way:

• Look at the test cases used and/or user

scenarios used and see how many detected the
fault that is now being corrected

• Count the number of reviewers or inspectors

that detected the fault (that is now being
corrected) during a code walkthrough or
inspection

Further research and experimentation is required to
determine other means for estimating the semantic
size of changes or planned changes.

3 CONCLUSIONS

This paper proposes a model for characterizing
changes based on the syntactic and semantic size
and looks at possible implications of this model.
Empirical studies in computer software
maintenance should consider the characterization of
changes based on its syntactic and semantic size.
Techniques for estimating and measuring the
semantic size of changes need to be developed.
These techniques will allow a new model for
evaluating maintainability, which will allow
empirical investigations to help answer questions
such as: Is maintainability impacted by the
characteristics and size of changes? Is it easier to
make a large syntactic change that is semantically
small? Is it easier to make a small syntactic change
that is semantically large? Other questions will
follow as this area is explored in more detail.

Also, the ideas presented in this position paper need
to be extended to apply to other types of
maintenance such as adaptive and preventive.

4 REFERENCES

[1] Offutt, J. and Hayes, J. Huffman. A semantic model

of program faults. The Proceedings of the
International Symposium on Software Testing and

Analysis. ACM, San Diego, California, January
1996, 195-200.

[2] De Lucia, A., Persico, A., Pompella, E., and
Stefanucci, S. Improving corrective maintenance
effort prediction: an empirical study. Seventh IEEE
Workshop on Empirical Studies of Software
Maintenance, Florence, Italy, November 9, 2001.

[3] Bianchi, A., Caivano, D., Lanubile, F., Rago, F.,
and Visaggio, G. Distributed and colocated
projects: A comparison. Seventh IEEE Workshop
on Empirical Studies of Software Maintenance,
Florence, Italy, November 9, 2001.

[4] Welker, K.D. and Oman, P.W. Software
Maintainability Metrics Models in Practice, Journal
of Defense Software Engineering, 8, 11
(November/December 1995):19-23.

[5] Oman, P. and Hagemeister, J. Construction and
Validation of Polynomials for Predicting Software
Maintainability (92-01TR). Moscow, ID: Software
Engineering Test Lab, University of Idaho, 1992.

[6] Ramil, JF. Why COCOMO Works' Revisited or
Feedback Control as a Cost Factor, Pre-Prints
FEAST 2000 Workshop, Imp. Col., London, 10 - 12
Jul. 2000, pp 89 – 94.

[7] Macario Polo, Mario Piattini and Francisco Ruiz,
Using code metrics to predict maintenance of legacy
programs: A case study, Proceedings of the
International Conference on Software Maintenance,
2001, 7-9 Nov. 2001, Florence, Italy.

[8] Hayes, J. Huffman. The Observe-Mine-Adopt
(OMA) Model: An Agile Way to Enhance Software
Maintainability. University of Kentucky Computer
Science Department Technical Report 340-02,
March 2002.

[9] Reilly, D. Top ten errors Java programmers make.
http://www.javacoffeebreak.com/articles/toptenerror
s.html.

[10] Goradia, T. Dynamic impact analysis: A cost-
effective technique to enforce error-propagation. In
Proceedings of the 1993 International Symposium
on Software Testing, and Analysis, pages 171-
181,Cambridge MA, June 1993.

[11] Bugzilla, the Bug Reporting System for Mozilla.
http://bugzilla.mozilla.org/.

[12] Maintainability Index Technique for Measuring
Program Maintainability,
http://www.sei.cmu.edu/activities/str/descriptions/mi
tmpm_body.html.

[13] Gujarati, DN. Basic Econometrics, 3rd. Edition, Mc
Graw Hill Inc., New York, 1995, 838 pp.

