
For 25 years, 
software researchers 

have proposed 
improving software 

development and 
maintenance with new 

practices whose 
effectiveness is rarely, if 
ever, backed up by hard 

evidence. We suggest 
several ways to address 

the problem, and we 
challenge the 

community to invest in 
being more scientific. 

NORMAN FENTON ond 
SHARI tAWRENCE PFLEEGER 

Ciiy University, London 
ROBERT L. GLASS 
Computing Trends 

SCIENCE AND SUBSTANCE: 
A CHALLENGE TO 
SOFWARE ENGINEERS 

S oftware researchers and engi- 
neers are always seeking ways to 

improve their abili+ to build-so&are. 
This search has resulted in such meth- 
ods as 

+ suucmred design and programming, 
+ abstract data types, 
+ object-oriented design and program 

n-@, 
+ CASE tools, 
+ statistical process control, 
+ maturity models, 
+ fourth-generation languages, and 
+ formal methods, 

among others. But in spite of such 
“advances,” software engineering in 
practice continues to be a labor-mten- 
sive, intellectually complex, and costly 
activity in which good management 
and communication seem to count for 

much more than technology. 
At the same time, the January 1993 

issue of the IEEE CS Technical 
Committee 0% Software Engineering 
Newsletter reported that since 1976 the 
Software Engineering Standards 
Committee of the IEEE Computer 
Society has developed 19 standards in 
the areas of terminology, requirements 
documentation, design documentation, 
user documentation, testing, verifica- 
tion and validation, reviews, and 
audits. And if you include all the major 
national standards bodies, there are in 
fact more than 250 sofhvare-engineer- 
ing standards. 

The existence of these standards 
raises some important questions. How 
do we know which practices to stan- 
dardize? And are the standards not 

66 07407459/94/$04.w D 1994 EEE JULY 1994 



r= 

working or being ignored, since many 
development projects generate less- 
than-desirable products? The answer 
is that much of what we believe about 
which approaches are best is based on 
anecdotes, gut feelings, expert opin- 
ions, and flawed research, not on care- 
ful, rigorous software-engineering 
experimentation. 

In this article, we examine some of 
the past and current problems with 
software-engineering research and 
technology transfer and suggest sever- 
al ways to redirect our efforts toward 
improving our ability to build and 
maintain software. 

RESEARCH CLAIMS 

Developers who want to improve 
their productivity or the quality of 
their product are faced with an enor- 
mous choice of methods, tools, and 
standards. Adopting one or more often 
involves considerable time, expense, 
and trouble. Rational managers and 
their subordinates are prepared to 
invest in a new technology if they have 
evidence that using it will ultimately 
produce benefits. Although a single 
evaluation can never cover all possible 
situations, it is reasonable to seek some 
evidence of a new technology’s likely 
eficacy when used under certain condi- 
tions. 

But evidence is rare. Vendors’ 
quantitative descriptions are often no 
more than sweeping claims like 

+ productivity gains of 250 percent, 
+ maintenance effort reduced by 80 

percent, and 
+ integration time cut by five sixths. 

Similar claims are often made by emi- 
nent experts. How can practitioners 
distinguish valid claims from invalid? 
And how can they determine that a 
particular method or technology is 
suited to their situation? 

One way is to examine claims care- 
fully from the viewpoint of scientific 
experimentation. As described by Vie 

II Basili, Rick Selby, and David 
Hutchens in their classic paper on 

software-engineering experimentation, 
there ic- a scientifically sound way to 
design and carry out software-engi- 
neering investigations.1 Their paper 
gives many examples of good research 
practice, plus guidelines for future 
experiments, but very few experiments 
reported since its publication have fol- 
lowed those recommen- 
dations. 

Admittedly, experi- 
mentation in software 
engineering is notori- 
ously difficult: Not only 
is it potentially expen- 
sive, but it can be daunt- 
ing to try to control vari- 
ables and environments. 
We applaud those who 
have performed an em- 
pirical study to confirm 
or refute their under- 
standing of likely effects, 
even as we criticize cer- 

often assumed that if sufficient bril- 
liance and analysis were put into con- 
ceiving a technique, benefits would 
surely follow. As a result, many 
research findings published can be 
characterized as “analytical advocacy 
research.” That is, the authors describe 
a new concept in considerable detail, 

derive its potential 

HOW CAN YOU 
TELL IF CLAIMS 
ARE VALID? 
ASK FIVE 
QUESTIONS 
THAT ADDRESS 
EXPERIMENTAL 
TECHNIQUE. 

benefits analytically, 
and recommend the 
concept be transferred 
to practice. Time pass- 
es, and other re- 
searchers derive simi- 
lar conclusions from 
similar analyses. Even- 
tually the consensus 
among researchers is 
that the concept has 
clear benefits. Yet prac- 
titioners often seem 
unenthused. Research- 
ers, satisfied that their 

communal analysis is correct, become 
frustrated. Heated discussion and fin- 
ger-pointing ensues. 

Something important is missing 
from this picture: rigorous, quantita- 
tive experimentation. In the traditional 
scientific method used by researchers 
in other disciplines, the formulation of 
an idea and its related hypothesis is fol- 
lowed by evaluative research to investi- 
gate if the hypothesis is true or false. 
Only when research results confirm 
the hypothesis do researchers advocate 
broad-based technology transfer. 
Moreover, the research tries to quanti- 
fy the magnitude, as well as the exis- 
tence, of a benefit. 

tain experiments. Our intent is to sug- 
gest improvements to software-engi- 
neering research practices, in the hope 
that the results of future research will 
reflect a more solid scientific founda- 
tion. To do that, we compare good 
experiments with flawed ones, to illus- 
trate the scrutiny required to deter- 
mine if a recommended practice lives 
up to its claims. 

RESEARCH REALITIES 

Five questions should be (but rarely 
are) asked about any claim arising 
from software-engineering research: 

+ Is it based on empirical evaluation 
and data? 

+ Was the experiment designed cor- 
rectly? 

+ Is it based on a toy or a real situation? 
+ Were the measurements used 

appropriate to the goals of the experiment? 
l Was the experiment run for a long 

enough time? 

Empiricism versus intuition. In manv 
ways, software-engineering research 
got off to a bad start. Early researchers 

Evaluative research must involve 
realistic projects with realistic subjects, 
and it must be done with sufficient 
rigor to ensure that any benefits identi- 
fied are clearly derived from the con- 
cept in question. This type of research 
is time-consuming and expensive and, 
admittedly, difficult to employ in all 
software-engineering research. It is not 
surprising that little of it is being done. 

On the other hand, claims made by 
analytical advocacy are insupportable. 
Today, practitioners must place their 

IEEE SOFTWARE 87 



r---- ~~ 
MEASUREMENT SCALES AND MEANINGFUL ANALYSIS 

Measurement is the 
process of assigning a num- 
ber or descriptor (a mea- 
sure) to an entity to charac- 
terize a specific attribute of 
the entity. By manipulating 
these numbers, instead of 
the entities themselves, you 
make judgments about the 
entities. However, you must 
use the measures in mathe- 
matically correct ways if 
your judgments are to make 
sense. The type of measnre- 
ment determines what 
analysis is acceptable. 

Meawremeti @es. You must 
assign measures that pre- 
serve your empirical obser- 
vations about the attribute 
you are interested in. For 
example, if the attribute of 
the entity person that you 
want to measure is height, 
then you must assign a nutn- 
ber to each person in a way 

many ways to assign num- 
bers that preserve all empiri- 
cal observations. For exam- 
ple, M(A) is greater than 
M(B) regardless of whether 
Ai is inches, feet, centi- 
meters, or furlongs. Further- 
more, the relationship 
among entities is preserved 

scale type and the analyses 
that can be done. Table A 
defines the most common 
scale types, in increasing 
order of sophistication. 

Usually, an attribute’s 
scale type is not known a 
priori. Instead, you start 
with a crude understanding 

ware quality and productivi- 
ty. Consider the software- 
hilure attribute “criticality.” 
Today we usually measure 
this by identifying different 
kinds of failures and relating 
them with a single binary 
relation, “is more critical 
than.” This kind of empiri- 

when you convert the of an attribute, devise a sim- cal relational system defines ~ 
attribute data from one 
measure to another, such as 
from inches to centimeters. 
Such a conversion is called 
an admirsible tra~ornzution. 

ple way to measure it, accu- 
mulate data, and see if the 
results reflect the empirical 
behavior of the attribute. 
Then you clarify and reeval- 
uate the attribute: Are you 
measuring what you really 
want to measure? This 
analysis helps you refine def- 
initions and introduce new 
empirical relations, improv- 
ing the accuracy of the mea- 
surement and, usually, 

a (relatively unsophisticated) 
ordinal scale type. 

So any two valid mea- 
sures, M and M; of the 
same attribute are related in 
a very specific way. For 
example, if M and Ware 
measures of height, there is 
always some constant c, 
greater than 0, such that M 

Meaningfulmeasures. This for- 
mal definition of scale type 
based on admissible eransfor- 
mations lets you determine 
rigorously what kind of 
statements about your mea- 
surement are meaningful. 
Formally, a statement 
involving measurement is 
meaningful if its truth or fal- 

=cM‘.IfMisinchesandA4’ increasing the sophistication sity remains unchanged 

faith in the reputation of the advocates 
who, although sometimes correct in 
the past, may not always be correct in 
the future. Consider the initial engi- 
neering attempts to allow humans to 
fly. Experts carefully studied the flight 
of birds, then developed flexible wings 
that would mimic it as closely as possi- 
ble. This sounded fine in theory but 
was disastrous in practice. It was not 
until a completely new paradigm, using 
rigid wings and Bernoulli’s laws, was 
conceived and tested that flight 
became possible. Empirical testing and 
analysis were critical to the discovery 
of the new paradigm. 

Unfortunately, software methods 
and techniques often find their way 
into standards even when there is no 
reported empirical, quantitative evi- 
dence of their benefit. This is true of 

86 

even the most sophisticated methods, 
developed with mathematical care and 
precision. For example, although there 
is some limited empirical evidence that 
fault-tolerant design for high-integrity 
systems (such as those that are safety- 
critical) is effective, there appears to be 
little or no published empirical work 
that supports the claims made on 
behalf of formal methods. 

The case of formal methods is an 
especially interesting and instructive 
example of a revolutionary technique 
that has gained widespread appeal 
without rigorous experimentation. 
Formal methods are based on the use 
of mathematically precise specification 
and design notations. In its purest 
form, formal development is based on 
refinement and proof of correctness at 
each stage in the life cycle. In general, 

adopting formal methods requires a 
revolutionary change in development 
practices. There is no simple migration 
path, because the effective use of for- 
mal methods requires a radical change 
right at the beginning of the tradition- 
al life-cycle, when customer require- 
ments are captured and recorded. 
Thus, the stakes are particularly high. 

Yet, when Susan Gerhart, Dan 
Craigen, and Ted Ralston performed 
an extensive survey of formal methods 
use in industrial environments,* they 
concluded 

There is no simple anszL’er to the 
question: do formal methods pay oj? 
Our cases provide a wealth of data 
but only scratch the sulfnce of infoor- 
mation available to address these 
questions. All cases involve so many 
interwoven factors that it is impossi- 

JULY 1994 



But if you say, “The tem- 
perature in Tokyo today is 
twice that in London,” your 
statement also implies the 
ratio scale, but in this case 
the ratio scale is not mean- 
ingful because air tempera- 
ture is measured in Celsius 
and Fahrenheit. So, while it 
might be 40°C in Tokyo and 
20°C in London (making 
your statement true), it 
would also be 104°F in 
Tokyo and 68°F in London 
(truth is not preserved). 
Thus, scalar multipkation is 
an inadmissible transforma- 
tion,andrhisisaninappro- 
priate We ofmcaa\nangt. 

8; Butsuppose you said, .- 
“The difference in tempera- 

I/ ) ture between Tokyo and 
! London today is twice what 

it was yesterday.” This state- 

81 
ment implies that the dis- 
tance between two measures 

‘! is meaningful, a condition 
that is part of the interval 

,i ! scale. The statement is 
meaningful, beCauSe 
Fahrenheit and Celsius are 
related by the af%ine a-arm 

truth or falsity of the state- 
ment remains consistent. 

which ensures that ratios of no such transformations for what kind of operations we 
differences (as opposed to the software-failure attribute. can perform on different 
just ratios) are preserved. If The statement, “Failure .r is measures. For example, it is 
it was 35°C yesterday in twice as critical as failurey” is meaningful to use the mean 
Tokyo and 2 5 “C in London not meaningful because we to compute the average of a 
(a difference of 10) and have only an ordinal scale for data set measured on a ratio 
today it is 40°C in Tokyo failure criticality. scale but not on an ordinal 
and 20°C in London (a dif- It is important to remem- scale. Medians are meaning- 
ference of 20), the differ- ber that meaningfulness is ful for an ordinal scale but 
ence will be preserved when not the same as truth. not for a nominal scale. 
you transform the tempera- Although the statement These basic observations 
tures to the Fahrenheit “Mickey IMouse is 102 years have been ignored in many 
scale: 95°F in Tokyo and old” is clearly false, it is nev- software-measurement stud- 
77°F London (a difference ertheless a meaningful state- ies, in which a common mis- 
of 18) and 104°F in Tokyo ment involving the age mea- take is to use the mean 
and 68°F in London (a dif- sure. (rather than median) as the 
ference of 36). The notion of meaning- measure of average for data 

Unfortunately, there are fulness lets us determine that is only ordinal. 

Af=F(M) where F is any ation, for example software 
one-to-one mapping t types (data, control, other) 

,\f’=F(.U) M-here F is any Ordering, for example, sohvare failure 
monotonic increasing map- bv severity (negligible, marginal, 
ping that is, ;Il(.v)kJl(y) &itical, catastrophic) 
implies .tr(.v)> A1l’(y) 

<:..;endar time, temperature 
(rc,tricted to Fahrenheit and Celsius) 

‘I ime interval, length 

ble to allocate payoffji-om formal 
methods versus other factors, strch as 
quality of people or effects of other 
methodologies. Even where data uas 
collected, it mas difimlt to interpret 
the results across the background of 

tive evidence to support the efficacy of cized claims is missing from the pub- ,i 
i formal methods, an observation con- lished results. II 

! firmed by the Gerhart study. Another study casts doubt on the :/ 
1 The project would appear to be a ~ claim that formal methods are a uni- I’ 
~ huge success - so successful that IBM versa1 solution to poor softvvare quali- 

One of the situations investigated 
by the Gerhart team was a joint project 
between IBM Hursley and the 
Programming Research Group at 
Oxford University.3 For 12 years, this 
project used the 2 specification lan- 
guage to respecify parts of Customer 
Information Control System-ESA 
Version 3 Release 1 as it was updated. 

the organization and the mrious jbc- 
and PRG shared the prestigious ty. In a recent article, Peter Naur+ 

tom suwounding the application. Queen’s Award for Technology. The reports that the use of formal notations 
project participants estimated that does not lead inevitably to higher qual- 
using Z reduced their costs hy almost ity specifications, even when used by 
$5.5 million, a savings of nine percent the most mathematically sophisticated 
overall. In addition, they claimed a 60 minds. In his experiment, the use of a 
percent decrease in product failure formal notation often led to more, not 
rate. These results led the PGR’s fewer, defects. 
Geraint Jones to assert in his 1992 e- These studies suggest that the hen- 
mail broadcast announcing the efits of formal methods are not self- 
Queen’s Award, “The moral of this evident and argue for experiments. Yet 

i tale is that formal methods cannot only there seems to he a widespread con- 
The project made a serious attempt to improve quality, hut also the timeliness sensus that formal methods should he 1~ 
quantify the benefits of using Z. As a 

) 
i and cost of producing state-of-the-art used on projects in which the software is 

result, the CICS project is widely products.” However, the quantified is safety-critical. For example, John 
believed to provide the best quantita- evidence to support these widely puhli- hicDermid’ asserts that “these mathe- 

~- ___--- ~.. 

IEEE SOFTWARE 89 



matical approaches provide us with the 
best available approach to the develop- 
ment of h?gh-integrity safety-critical 
systems.!? In .addition,’ the interim UK 
defense standard for such systems, 
De&d 00-35, makes the use of formal 
methods mandatory.6 

The assumption seems to be that no 
expense should be spared to improve 
confidence in the rejia- 
bility of critical systems. 
Unfortunately, no real 
project has unlimited 
funds. Even safety-criti- 
cal projects must use the 
most cost-effective way 
to ensure reliability. 
Rather than abandon 
formal methods, we 
suggest their use be 
embedded in the con- 
text of an experiment so 
that their effect on soft- 

CURRICULA 
analyzing empirical data 
in the context of a rigor- 

FOR THE MOST ous investigation provides 
a sounder basis for 

PART DO NOT changing practice than 

COYER HOW anecdote or intuition. 

TO’ESTABLISH Experimental design. 

AND EVALUATE 
The experimental de- 
sign must be correct for 

THE bESIGN OF the hypothesis being 

EXPEliIMENtS. 
tested. Some of the best 
publicized studies have 

of the few consensus views to emerge 
in empirical studies: Inspections are the 
cheapest and most effective testing 
techniques for finding faults. 

Even here, it is iniportant to keep 
the objective of the experiment in 
mind. The table shows overall testing 
efficiency, but does not report efficien- 
cy with respect to particular kinds of 

faults. Nevertheless, 

ware quality and relia- 
bility can be studied and 
assessed. At present, there is no hard 
evidence to show that 

+ formal methods have been used 
cost-effectively on a realistic, safety- 
critical development; 

+ using formal methods delivers 
reliability more cost-effectively than, 
say, traditional structured methods 
with enhanced testing; and 

+ developers and users can be 
trained in sufficient numbers to use 
formal methods properly. 

There is also the problem of choos- 
ing among competing formal methods, 
which we assume are not equally effec- 
tive in a given situation. By thinking 
about a more scientific context before 
using formal methods, a project can try 
them and contribute to the larger body 
of software-engineering understanding. 

There are some techniques that 
have become standards or standard 
practice after careful, empirical analy- 
sis. A good example is the use of 
inspections to uncover defects in code. 
Table 1 compares the efficiency of dif- 
ferent kinds of testing techniques, as 
reported by Bob Grady.7 This and sim- 
ilar research experiments confirm one 

subsequently been chal- 
lenged on the basis of 

inappropriate experimental design. For 
example, an experiment by Ben 
Shneiderman and his colleagues 
showed that flowcharts did not help 
programmers comprehend documenta- 
tion any better than pseudoc0de.s As a 
result, flowcharts were shunned in the 
software-engineering community and 
textbooks almost invariably use 
pseudocode instead of flowcharts to 
describe specific algorithms. 

However, some years later David 
Scanlan demonstrated that structured 
flowcharts are preferable to pseudo- 
code for program documentation.9 
Scanlan compared flowcharts and 
pseudocode with respect to the relative 
time needed to understand the algo- 
rithm and the relative time needed to 
make (accurate) changes to the algo- 
rithm. In both dimensions, flowcharts 
were clearly superior to pseudocode. 
Although some of Scanlan’s criticisms 
of Shneiderman’s study are controver- 
sial, he appears to have exposed a num- 
ber of experimental flaws that explain 
the radically different conclusions 
about the two types of documentation. 
In particular, Scanlan demonstrated 

that Shneiderman overlooked several 
key variables in his experimental 
design. 

Similar flaws in experimental design 
have misled the community about the 
benefits of structured programming. 
Harlan Mills’ claims are typical:10 

When a program was claimed to be 
PO percent done with solid top-down 
structured programming, it would 
take only 10 percent more effort to 
complete it (instead ofpossibly anotb- 
er PO percent!). 

But Iris Vessey and Ron Weber exam- 
ined in detail the published empirical 
evidence to support the use of struc- 
tured programming. They concluded 
that the evidence was “equivocal” and 
argued that the problems surrounding 
experimentation on structured pro- 
gramming are “a manifestation of poor 
theory, poor hypothesis, and poor 
methodology.“1 

The classic experiment by Gerald 
Weinberg on meeting goals shows that 
if you don’t choose the attributes for 
determining success carefully, it is easy 
to maximize any single one as a success 
criterion.12 Weinberg and Schulman 
gave each of six teams a different pro- 
gramming goal, and each team opti- 
mized its performance (and “succeed- 
ed”) with respect to its goal - but per- 
formed poorly in terms of the other 
five goals. You can expect similar 
results if you run experiments out of 
context, because you will be narrowly 
defining “success” according to only 
one attribute. 

These examples show that it is criti- 
cal to examine experimental design 
carefully. Many software engineers are 
not familiar with how to establish or 
evaluate a proper design. This is due in 
no small part to the almost total 
absence of topics like experimental 
design, statistical analysis, and mea- 
surement principles in most computer- 
science and software-engineering cur- 
ricula. The guidelines presented by 
Basili and his colleagues are a good first 
step, but the paper does not present 
important material in enough detail. 

90 JULY 1994 

I/ 



L L 

To address this problem, the British 
Department of Trade and Industry is 
now funding two projects in the UK: 
SMARTIE is producing guidelines 
about how to evaluate the effectiveness 
of standards and methods, and 
DESMET is preparing handbooks for 
software researchers and engineers on 
experimental design and statistical 
analysis. 13 

Toy versus real. Because of the cost of 
designing and running large-scale 
studies, exploratory research in soft- 
ware engineering is all too often con- 
ducted on artificial problems in artifi- 
cial situations. Practitioners refer to 
these as toy projects in toy situations. 
The number of research studies using 
experienced practitioners (instead of 
students or novice programmers) on 
realistic projects is minuscule. 

This is particularly noticeable in 
studies of programmers, a field in 
which evaluative and experimental 
research is the norm. At its major con- 
ference, Empirical Studies of 
Programmers, the community’s leaders 
continue to recommend that 

Testing type 
Regular use 

Efficiency (defects found per hour) 
0.210 

researchers study real 
projects and real pro- 
grammers, yet many of 
the findings reported at 
the conference contin- 
ue to involve small, stu- 
dent projects. Because 
of cost and time con- 
straints, even this com- 
munity refrains from 
doing large-scale, real- 
istic studies. 

To be sure, evalua- 
tive research in the 
small is better than no 

especially for experienced practitioners 
on real software projects, but it does 
indicate directions for further investi- 
gation. Similarly, Naur’s experiment4 
was small but exposed a weakness in a 
popularly held belief about formal 
notations. 

In another small but valuable 
study, Elliot Soloway, Jeffrey Bonar, 
and Kate Ehrlich examined which 
looping constructs novice program- 
mers found most natural.15 Popular 
assumptions about structured pro- 
gramming are reflected in the fact 
that many languages supply a while- 
do loop (exit at the top) and a re- 
peat-until loop (exit at the bottom). 
But the Soloway study revealed 
that the most natural looping struc- 
ture was neither of these, but a loop 
that allows an exit in the middle, 

a technique disallowed 
in structured program- 

EXPERIMENTS 
MAY BE 
DESIGNED 
PROPERLY BUT 
MEASURE OR 
ANALYZE THE 
WRONG DATA. 

ming. This result im- 
plies that language 
designers, who follow- 
ed common wisdom in 
not supplying such a 
loop, may inavertently 
make programming tasks 
more difficult than they 
need to be. 

How do the results 
from toy studies scale up 
to larger, more realistic 
situations? Although 

evaluative research at all. And a small some studies have addressed this 
project may be appropriate for an ini- question (as we describe later in dis- 
tial foray into testing an idea or even a cussing Cleanroom), little research 
research design. For example, Vessey has been done to answer that ques- 
conducted an interesting experiment tion. The best that can be said is that, 
using students and small projects that just as software-development-in-the- 
indicates object orientation is not the small differs from software-develop- 
natural approach to systems analysis ment-in-the-large, research-in-the- 
and design that its advocates claim it to small may differ from research-in- 
be.14 The results are not conclusive, the-large. There is something about 

IEEE SOFTWARE 

the nature of software tasks and the 
required communication among team 
members that prevents our under- 
standing of small-scale work from 
yielding an understanding of large- 
scale work. 

Obviously, there is no easy solu- 
tion to this problem. It is not possible 
for a lone researcher, operating on a 
relatively small budget, to conduct 
the kind of research needed. Credible 
studies require the cooperation and 
financial backing of major research 
institutions and software-develop- 
ment organizations. To date, such 
support has been rare. 

Appropriate measures. Sometimes an 
experiment is designed properly but it 
measures and analyzes insufficient data 
or the wrong data. 

Meowing the right otfribufe? The most 
common example is success criteria. 
For example, a study to demonstrate 
the effectiveness of using abstract 
data types used program size, mea- 
sured in lines of code, as a measure of 
product quality.16 Often purely sub- 
jective measures are used in the 
absence of objective measures. This is 
sometimes unavoidable; for example, 
in measuring user satisfaction. 
However, the conclusions you can 
draw from subjective data are very limit- 
ed. For example, Virginia Gibson and 
James Sennli show that maintainers’ 
subjective perceptions of which sys- 
tems are most easily maintained differ 
wildly from objective data that mea- 
sured maintainability. 

Another measure that is commonly 
misleading is reliability. One of the 
most effective ways to demonstrate a 
method’s efficacy is to show that it 
leads to more reliable software. How- 

91 



Faults with 5O<MTTF<160 years ,, ,’ Common faults MlTk50 years 

1,600<MlTF4000 yeorr 

Figure 1. The relationship bemeen faults and failures, which shows that focusing 
on faults instead of failures can be fatal. Studies that compare testing methods by 
using faults may be inappropriate and misleading. 

ever, measu&ng reliability involves 
tracking operational failures over time, 
and it is not always practical to wait 
until software is completed to evaluate 
its reliability. The most common “sub- 
stitute” measure is the number of faults 
or defects discovered during develop- 
ment and testing, a number that can be 
very misleading. 

At IBM, Ed Adams examined data 
from nine large software products, each 
with many thousands of years of logged 
use worldwide.ls Figure 1 shows the 
relationship he discovered between 
detected faults and their manifestation 
as failures. For example, 33 percent of 
all faults led to a mean-time-to-failure 
greater than 5,000 years. In practical 
terms, such faults will almost never 
manifest as failures. Conversely, about 
two percent of faults led to an MTTF 
of less than 50 years. These faults are 
important to find, because a significant 
number of users will eventually be 
affected by the failures they cause. 

It follows that finding and removing 
large numbers of faults may not neces- 
sarily improve reliability. The crucial 
task is to find the important two per- 
cent of faults. Thus, a focus on faults 
instead of failures can be fatal, unless a 
technique can identify the faults that 
have a short MTTF or greatly affect 
system behavior. Many studies have 
compared the effectiveness of different 
testing methods, but if the comparison 
is done in terms of general faults dis- 
covered, they may be inappropriate and 
misleading. 

Whof stole? In addition to measuring 
the correct attribute, researchers must 
take care to evaluate and manipulate 
the measurements in a way that is 
appropriate to the design and the kind 
of data collected, as the box on pp. 88- 
89 briefly explains. 

Data falls into one of five scales: 
nominal, ordinal, interval, ratio, and 
absolute. Each scale reflects the data’s 
properties and can be manipulated 
only in certain ways. For example, 
nominal data includes labels or classi- 
fications, such as when you classify 
requirements as data requirements, 
interface requirements, and so on. 
Nominal data can be analyzed statisti- 
cally in terms of frequency and mode, 
but not in terms of mean or median. 
In other words, only nonparametric 
statistical tests are valid on nominal 
data. The software-engineering litera- 
ture is rife with experiments in which 
means and standard deviations are 
applied to nominal data, but their 
results are meaningless in the sense of 
formal measurement theory. 

Likewise, there is an embarrassingly 
large set of literature in which inappro- 
priate statistical techniques are applied. 
For example, a researcher might com- 
pare correlation coefficients across dis- 
parate sets of data instead of using the 
more appropriate analysis of variance. 
One of the most talked-about measures 
in software engineering is the Software 
Engineering Institute’s process-maturi- 
ty level. This five-point ordinal scale is 
only a valid measure of an organiza- 

tion’s process maturity if it can be 
demonstrated that, in general, organi- 
zations at level n + 1 normally produce 
better software than organizations at 
level n. This relationship has not yet 
been demonstrated, although the SE1 
has told us that relevant studies are 
underway. 

long-term view. Sometimes research 
is designed and measured properly but 
just isn’t carried on long enough. Short- 
term results masquerade as long-term 
effects. For example, speakers at the 
annual NASA Goddard Software 
Engineering Conference often report on 
an experiment at the Software 
Engineering Laboratory to investigate 
the benefits of using Ada instead of 
Fortran. The researchers examined a set 
of new Ada projects and found that the 
productivity and quality of the resulting 
Ada programs fell short of equivalent 
programs written in Fortran. However, 
the SEL did not stop there and report 
that Ada was a failure. It continued to 
develop programs in Ada, until each 
team had experience with at least three 
major Ada developments. These later 
results indicated that there were indeed 
significant benefits of Ada over Fortran. 

The SEL concluded that the learning 
curve for Ada is long, and that the 6rst 
set of projects represented program- 
mers’ efforts to code Fortran-like pro- 
grams in Ada. By the third development, 
the programmers were taking advantage 
of Ada characteristics not available in 
Fortran, and these characteristics had 
measurable benefits. Thus, the long- 
term view led to conclusions very differ- 
ent from the short-term view. 

The CASE Research Corp. found 
something similar when it considered the 
empirical evidence supporting the use of 
CASE tools.19 They found that, contrary 
to the revolutionary improvements ven- 
dors invariably claimed, productivity 
normally decreased in the first year of 
CASE use, followed by modest improve- 
ment. Again, the short- and long-term 
assessments yielded opposite conclu- 
sions. However, the study found that the 
eventual improvement was rarely more 

92 JULY 1994 



than 10 percent and might be explained 
by factors other than the use of CASE 
(or may even fall within the margin of 
error). Moreover, compared with acqui- 
sition and upgrade costs, such modest 
improvements may indicate that CASE 
is not even cost-effective. 

Researchers must take a long-term 
view of practices that promise to have 
a profound effect on development and 
maintenance, especially since the resis- 
tance of personnel to new techniques 
and the problems inherent in making 
radical changes quickly can mislead 
those who take only a short-term view. 

RECENT EXAMPLES 

Although most software-engineer- 
ing research does not meet the 
requirements we outline here, some 
interesting examples do. 

Cleanroom. Perhaps the single most 
complete research study involves Clean- 
room.20 Studies at the SEL, done in 
conjunction with the University of 
Maryland at College Park and Com- 
puter Sciences Corp., examined the 
Cleanroom error-detection and test- 
ing methodology using 

t student subjects on small projects, 
+ NASA staff members on small real 

projects, and 
t experienced industry practitioners 

on a sizable real project. 
The findings used data collected both 
prestudy and within each context. For 
example, baseline data from projects 
not using the Cleanroom approach 
showed an error rate of six per thou- 
sand lines of code and productivity of 
24 lines of code per day. The study of 
NASA staff using Cleanroom showed 
4.5 errors per thousand LOC and pro- 
ductivity of 40 LOC per day, and the 
industry practitioners’ Cleanroom 
project showed 3.2 errors per thou- 
sand LOC and productivity of 26 
LOC per day. (Note how reliability 
improved significantly as Cleanroom 
was scaled up to a large program, but 
productivity did not.) 

This study meets nearly all the cri- 
teria for good software-engineering 
research: 

not all, the goals for good research 
because 

+ It involved empirical evaluation 
and data. 

+ They involve empirical evaluation 
and data. 

+ Its design was reasonable, given 
that the projects were “real.” 

+ It involved both toy and real situa- 
tions. 

+ Use questionable experimental 
design. 

* Involve real situations. 
l Use measurements appropriate to 

the experimental goals. 
+ The measurements were appropri- 

ate to the goals. 
+ Are being run over an appropriate 

period of time. 
+ The experiment was conducted 

over a period of time suf&ient to encom- 
pass the effects of change in practice. 

Object-oriented design. The SEL is 
also involved in a more mixed example 
of software-engineering research. In 
this case, it is gathering data over sev- 
eral years on eight major software 
projects using the object-oriented 
approach to building software. The 
series of studies is not finished, and the 
scaled-up study is not due for comple- 
tion until 1996, but 
researchers are already 
reporting that the ap- 
proaches studied repre- 
sent “the most impor- 
tant methodology studies 
by the SEL to date.“21 

So far, researchers 
have reported that the 
amount of reuse rises 
dramatically when 00 
techniques are used, 
from 20 to 30 percent to 

4GLs. More typical of research 
approaches in the last decade are the 
studies of the benefits of fourth-gener- 
ation languages. Several interesting 
studies published in the late 1980s 
compare Cobol and various 4GLs for 
implementing relatively simple busi- 
ness systems applications.22-24 The 
findings of these studies are fascinat- 
ing but hardly definitive. Some report 
productivity improving with the use 
of 4GLs by a factor of 4 to 5, while oth- 

ers describe only 29 to 39 

THERE ARE 
percent differences. In 
some cases, object-code 

FAR TOO FEW performance degraded by 
a factor of 15 to 174 for 

EXAMPLES OF 4GLs, while other 4GLs 

MODERATELY produced code that was 
six times as fast! 

EFFECTIVE It is apparent from 

RESEARCH. the studies that mea- 
sured effects are highly 
dependent on the 4GL 
s&died, the project’s 

80 percent, and 00 programs are about 
three-quarters the length (in lines of 
code) of comparable traditional solutions. 
On the other hand, 00 projects have 
reported performance problems 
(although it is unclear how much of these 
problems are the result of 00), and 00 
appears to require significant dqmain 
analysis and project tailoring. 

Unfortunately, the projects under study 
are also using Ada, and the studies have 
not separated the effects of 00 fi-om those 
of Ada. And because many of the benefits 
appear to be the result of increased 
reuse, it is not clear what gains are due 
to Ada, 00, or reuse. 

So these studies meet many of, but 

application, and the people doing the 
job (for example, end users versus 
software specialists). 

Examining the 4GL studies with 
the same criteria for good research in 
mind, we can make the following state- 
ments: 

+ The studies were based on empiri- 
cal evidence and data. 

+ The experimental designs were 
reasonable. 

+ The projects were not toys, but 
neither were they sizable. 

+ The measurementS were appropri- 
ate to the study goals. 

+ The experiments were not done 
over an extended period of time. 

IEEE SOFTWARE 93 



(Interestingly, two of the studies involved 
the same author, implying tbat the author 
may have made a second attempt at 
research in the topic area.) 

Thus, recent examples of evaluative 
research paint a mixed picture. There 
are examples of effective research, but 
they are far too few in number. There 
are examples of moderately good 
research, and we can learn interesting 
things from them; however, follow-up, 
long-term, significant project studies 
are needed. And there are many exam- 
ples of research that does no evalua- 
tion whatsoever. Given this spectrum, 
one thing is clear: there is considerable 
room for improvement. 

W  e continue to look for new tech- 
nologies to improve our ability 

to build and maintain software. Bnt 
there is very little empirical evidence to 

conf!rm that technological fixes, such as 
introducing specific methods, tools and 
techniques, can radically improve the 
way we develop software systems. Even 
when improvements can be made by 
using specific methods, there is an 
urgent need to quantify the benefits and 
costs involved, and to compare these 
with competing technologies. At pre- 
sent, little quantitative data is available 
to help software managers make 
informed decisions about which 
method to use when change is needed. 

The difficulty in performing the 
well-designed, quantitative assessments 
necessary to evaluate technologies in an 
objective manner is small compared 
with the massive resistance to change. 
Until there is widespread demand and 
expectation for objective measurement- 
based evaluation, software managers 
and standards bodies will continue to 
place their trust in unsubstantiated 

advertising claims, misleading or 
incomplete research reports, and anec- 
dotal evidence. 

Thus, we challenge the software- 
engineering community to take three 
major steps toward producing more 
rigorous and meaningful analyses of 
current and proposed practices: 

+ Fe-r the sojhare wzanagm Insist on 
quantitative data and well-designed 
experimental research to substantiate any 
claims made for new or changed prac- 
tices. And be willing to participate in 
such experiments to further your knowl- 
edge in particular and the software-engi- 
neering community% in general. 

+ For the sojhuare developer or main- 
tainer: Be flexible and willing to partici- 
pate in experiments involving existing 
or new techniques or methods. Try to 
be objective in providing data to 
researchers, and help them identify 
behaviors, attitudes, or practices that 

ACKNOWEDGMENTS 
Norman Fenton is supported in part by the SMARTIE and PDCSZ projects. We thank Chris Kemerer, Bev Littlewood, Peter Mellor, 

and Stella Page for their contributions to this article. The final version was considerably improved as a result of the comments of several 
anonymous referees. 

REFERENCES 
1.V.R Bas& RW. Selby,andDH. Huwbms, “Ekqmhmtatimin~~eering,“~Tm .Y@umeEng.,  June 198x5,~~. 758-773. 
2. S. Gerhart, D. Craigen, and A. Ralston, “Observation on Industrial Practice Using Formal Methods,” Rtx Int’l Cunlf: .Softll)ar Eng., IEEE CS Press, Los 

Ahitos, Calif., 1993, pp. 24-33. 
3.LHoustonands.King,“~~project~~~ -and~~~the~of~LemauNombrconqnrtffsEMm,voL551,1991. 
4.P.Naur,‘~~~Turing’sU~Macfi ineP~S~inProgram~~”C~~,No.4,1993,pp.351-371. 
5,J~MMcDermid,“SQfetyCriticalSofolare:AV~~,”IEESofiworeEng.~,No. 1,1993,pp.2-3. 
6.kaoim~srrmrLmiWSS::‘Iheproamnrem ~~~Sofhumein~Equipment,~ofDefenoeDireaorateofS~ti~Glasgow,Scotland,1991. 
7.RB.Gr;ldy,,PmrtkalSoFwnreM~~~~~~~ti~~Engiewood~,N~.,1992. 
B.B.Shneidermanetal.,‘~~~Iwestigdt~oftheUtil in/ofDerailedFlowrhartsin~~CmnmACM,June 1977,pp.373-381. 
9. DA Scmlan, “So Flowhans Outperfmm Pseudocode. .AnEap&ne&~lEEES$uwv, Sept 1989,pp.28-36. 
10. H. Mills, “Srmctured Programming: Retrospect and Prospect,” IEEE Soj&we, Nov: 1986, pp. 58-66. 
11. I. Vessey and R. Weber, “Research on Snuctured Programming: An Empiricist’s Evaluation,” LEEE Tram. SqFware Eng., July 1984, pp. 397-407. 
12. G. Weinberg and E. Schulman, “Goals and Performance in Computer Programming,” Human Factors, No. 1,1974, pp. 70-77. 
13. W.-E. Mohamed, CJ. Sadler, and D. Law, “Experimentation in Software Engineering: A  New Framework,” &UC. Sofnume @w&y Management ‘93, Elsevier 

Science, Essex, U.K. and Computational Mechanics Publications, Southampton, U.K., 1993. 
14. I. Vessey and S. Conger, “Requirements Specification: Learning Object, Process, and Data Methodologies,” Gown. ACM, May 1994. 
15. E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive Strategies and Looping Constructs: An Empirical Survey,” Caan. ACM, Nov. 1983, pp. 853-860. 
16. J. Mitchell, J.E. Urban, and R. McDonald, “The Effect of Absuact Data Types on Program Development,” Cmputer, Aug. 1987, pp. 85-88. 
17. V.R. Gibson and J.A. Senn, “System Saucture and Software Maintenance Performance,” Comwz. ACM, Mar. 1989, pp. 347-358. 
18. E. Adams, “Optimizing Preventive Service of Software Products,” IBMj’. Research and Developmmt, No. 1, 1984, pp. 2-14. 
19. CASE Research Group, The SecondAnnval Report on CASE, Bellevue, Wash., 1990. 
20. A. Kouchakdjian and V.R. Basili, “Evaluation of the Cleanroom Methodology in the SEL,” PTOE. So&vwe Eng. Workhp, NASA Goddard, Greenbelt, MD., 

1989. 
2 1. M. Stark, “Impacts of Object-Oriented Technologies: Seven Years of Software Engineering,“3. Systemr and SofN)are, Nov. 1993. 
22. SK. Misra and PJ. Jalics, “Third-Generation versus Fourth-Generation Software Development,” IEEE Software, July 1988, pp. 8-14. 
23. V. Matos and PJ. Jalics, “An Experimental Analysis of the Performance of Fourth-Generation Tools on PCs,” Comm. ACM, Nov. 1989. 
24. J. Verner and G. Tate, “Estimating Size and Effort in Four&Generation Development,” LEEE Sofbare, July 1988, pp. 15-22. 

94 JULY 1994 



might affect the aspects of the project 
being studied. 

+ For the software researcher: 
Employ evaluative research as a neces- 
sary component in exploring new 
ideas. Learn about rigorous experi- 
mentation, and design your projects 
accordingly. Ty to quantify as much 
as possible, and Identify the degree to 
which you have control over each of 
the variables you are studying. 

By taking these steps, the entire com- 
munity should benefit. Finding willing 
industrial partners for research should 
be made easier, as the potential benefit 

to all participants is clear. The European 
Community has recognized the urgent 
need for quantitative evaluation per- 
formed by industry-research partner- 
ships. A new program called the Euro- 
pean Systems and Software Initiative has 
been defined and funded (initial funding 
is $50 million) to support projects that 
aim to evaluate specific software meth- 
ods or tools. Eventually, with programs 
such as these, the practice of software 
engineering will benefit from better 
approaches resulting from scientific 
investigation and demonstrated 
improvement. + 

Norman Fenton is a professor of computing science in the Centre for Software 
Reliability at City University, a consultant on metncs programs, and the leader 
of WARTIE, a project to develop a measurement-based framework to BSSCSS 
software-engineering standards and methods. IIis research interest? include 
software measurement and formal methods, and he has written three books and 
many papers on these subjects. He is the editor of the Chapman and Hall 
Computer Science Research and Practice Series and scrvcs on the editorial 
hoard of So&we Quali~3m-nal. 

Fenton received a PhD in mathematics from Sheffield Umversity. He is a 
member of the IEE (chartered engineer), an associate fellow of the Institute of 

Mathematic and its Applications, and a member of the IEEE Computer Society. 

George Mason Uniter 
the founder of the 40 

Shari Lawrence Pfleeger is president of Systems/Software, Inc., a consultancy 
on software engineering, process improvement, and measurement, and a visiting 
professorial research fellow at both the City University of London’s Centre for 
Software Reliability and the University of North London, where she is evaluat- 
ing the extent and effect of standarda and writing experimentation and case- 
study guidelines for software engineers. She has written two books on computer 
science and software rngineering and manv research papers m computer science 
and mathematics, and she serves on the cd&al board of IEZ?E &j&we and the 
advisov hoard of IEEE Spem-um. 

Pfleeger received a PhD in information technology and engineering from 
sity. She is a member of the IEEE, the IEEE Computer Society, and AC&l, and 
(1 Committee on the Status of U’omen and Minorities. 

Robert L. Glass is publisher of The S&~rr Pmc-tmvw, editor of the 3ournal of 
Systems and So&w-e, a regular columnist for Systmn Dcoelopment, and a visiting 
professor of software engineering at Linkopinp University. He is interested in 
all facets of software engineering, especially in quality and maintenance. He has 
w-ritten 17 hooks and more than 30 papers on computing and software. 

Glass received an MSc in mathematics from the University of Wisconsin at 
Madison. He is a member of the IEEE, the IEEE Computer Society, and ACM. 

Address questions about this article to Fenton or Ptleegw at CSR, City University, 2 Riverside Close, 
Kingston Upon Tharnes, Surrey KTl,ZJF, England; n.e.fenton or shari@csr.city.ac.uk, or to Glass at 
Computer Trends, PO Box 2 13, State College, PA 16804. 

Free report from Peter Coad reveals 
amazing industry breakthrough! 

“Object modeling and C++ 
programming, side-by- 
side; always up-to-date.” 
Big CASE tool vendors caught with 
their pants down! 

W hat if YOU could have your OOA/OOD 
moderand all of your C+t code continu- 

ously up-to-date, all the titie. throughout your 
development effort? 
Consider the possibilities 

In one window,,you see an object model. with 
automatic, sermautomatic, and manual 
layout modes, plus corn 

f: 
lete view manage- 

ment. Side-by-side. in t e other window, you 
see fully-parsed Ctt code. You edit one 
window or the other. Press a key. Both 
windows agree with each other. Together. 
Su pose that,you are workmg on a proJecJ 

3 wit some existing code. (That’s no surprise. 
who’d consider developin 

8 
in Ctt without 

some off-the-shelf classes. I You read the code 
in. Hit a button. And seconds later, you see 
an object model, automatically laid out and 
ready for vou to study side-by-side with the 
Ctt code ;&elf. Together. 
Or suppose you are building software with 
other people 1 that’s no surprise either). You 
collaborate with others and develo software 
with a lot less hassle,,because the t! ully 
integrated configuratlon management feature 
helps you keep it all...Together. 
The name of this product? It’s earned the 
name... 

Together/c+) 
continuously up-to-date 

object modeling and C++ programming 

Key features: 
l Continuouslv w-to-date oblect modehnp & C++ 

. Automatic. semi-automatic. and manual laycut of 
object models 

l Oblect modeling view management, m&ding view 
cc&ml bv C++ conbtruct. regular express~,n. 
proximiti, layer. or dnwtory 

v Fulls flexible documentahon generatwn, version 
etmt”rol, and SQL generation 

“State-of-the-art application development.” 
-- Comput~rworldiGermany 

“You’ve reallv hit the nail on the head when it 
comes to rev&se engineering existing Ctt 
code. No other tool comes close to the power 
and capability of Together/C++.” 

. . Russell Rudduck, Perot Systems 
Money-back gorantee. Purchase Together/ 
Ctt and trv it out risk-free for 30 days. If for 
an reason”vou aren’t satisfied, return it for a 
ful f refund.i.Uo hassles, no hard feelings 
either.)We’re that confident about Togetheri 
Ctt. You see, To ether/C++ has already 
helped software evelopers deliver better If 
systems, with success stories in tele- 
communications, insurance and natural 
resource managment. 
How to order. Order Together/C++ by 
purchase order. check. or credit card, or for 
more information. please contact 

IEEE SOFTWARE 



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


